Contracts in Bitcoin

- John Newbery, Chaincode Lab
chaincode S T shezoo

Contracts and “Smart” Contracts
Script in Bitcoin
Contracts on a Public Blockchain
The History of Script in Bitcoin

The Future of Contracts in Bitcoin

Contracts and “Smart” Contracts

Meeting of the minds

Binding

New Institutions, and new ways to formalize the
relationships that make up these institutions, are
now made possible by the digital revolution. |
call these new contracts "smart", because they
are far more functional than their inanimate
paper-based ancestors.

A smart contract is a set of promises, specified ,‘ S
In digital form, including protocols within which |
the parties perform on these promises.

Smart Contracts: Building Blocks for Digital Markets (1996) by Nick Szabo

Objectives of contract design

O I

Observabillity Verifiability

U ©

Privacy Enforceability

Script in Bitcoin

script| 0/0

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Daigital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power 1s controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort

4 4 41

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the
next by digitally signing a hash of the previous transaction and the public key of the next owner

and adding these to the end of the coin. A payee can verify the signatures to verify the chain of
ownership.

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

vy vy | vy
Hash Hash Hash
Owner QO's A Owner 1's a Owner 2's
Signature v Signature v Signature
&S &
Owner 1's | Owner 2's | Owner 3's

Private Key Private Key Private Key

44

R NWPLUTO N

Ooco~NOTUV P WN -

//

// Script is a stack machine (like Forth) that evaluates a predicate

// returning a bool indicating valid or not. There are no loops.

//

#define stacktop(i) (stack.at(stack.size()+(1)))
#define altstacktop(i) (altstack.at(altstack.size()+(1)))

Bool EvalScript(const CScript& script, const CTransaction& txTo, unsigned int nIn, int nHashType,

{

vector<vector<unsigned char> >* pvStackRet)

CAutoBN_CTX pctx;

CScript::const_iterator pc = script.begin();
CScript::const_iterator pend = script.end();
CScript::const_iterator pbegincodehash = script.begin();
vector<bool> vfExec;

vector<valtype> stack;

vector<valtype> altstack;

if (pvStackRet)

pvStackRet->clear();

while (pc < pend)

{

bool fExec = !count(vfExec.begin(), vfExec.end(), false);

//

// Read instruction

//

opcodetype opcode;
valtype vchPushValue;
1f (!script.GetOp(pc, opcode, vchPushValue))

retu

rn false;

if (fExec && opcode <= OP_PUSHDATA4)

stac

k.push_back(vchPushValue);

else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
switch (opcode)

{

//

// Push value

//

case
case
case
case
case
case
case
case

OP_INEGATE:
OP_1:
OP_2:
OP_3:
OP_4:
OP_5:
OP_6:
OP_7:

1
1115 Bool VerifySignature(const CTransaction& txFrom, const CTransaction& txTo, unsigned int nIn, int nHashType)

1 {

2 assert(nIn < txTo.vin.size());

3 const CTxIn& txin = txTo.vin[nIn];

4 1f (txin.prevout.n >= txFrom.vout.size())

5 return false;

6 const CTxOut& txout = txFrom.vout[txin.prevout.n];
14
8
9

if (txin.prevout.hash != txFrom.GetHash())
return false;

11 return [ALIREEEI(txin. scriptSig + CScript(OP_CODESEPARATOR) + txout.scriptPubKey, txTo, nIn, nHashType);

Once version 0.1 was released, the core design
was set in stone for the rest of its lifetime.
Because of that, | wanted to design it to support
every possible transaction type | could think of.

The solution was script. The nodes only need to
understand the transaction to the extent of
evaluating whether the sender's conditions are
met.

The script Is actually a predicate. It's just an
equation that evaluates to true or false. Predicate
Is a long and unfamiliar word so | called it script.

https://bitcointalk.org/index.php?topic=195.msg1611#msg1611 (2010) by Satoshi Nakamoto

https://bitcointalk.org/index.php?topic=195.msg1611#msg1611

Contracts on a Public Blockchain

The Good News

4
G

Verifiability

Enforceability

The Bad News

@ Enforceability %
O Privacy E/I I Scalability

87 EXpressiveness
»

Fungibility

Contracts executed by explicitly published
code are really only using the blockchain for
one thing - to get an immutable ordering of
what order the transactions happen in. All
that they really care about is that their
transaction is not reversed and not double
spent.

All of the extra detalls of the contract
execution can be done by things that are not
blockchains.

Using chains for what they’re good for (2017) by Andrew Poelstra

Post’s Theorem

Turing-complete languages define Computably Enumerable predicates
In the 1930s, Emil Post defined an Arithmetic Hierarchy

* AO predicates have no unbound quantifiers (eg vX<z3ay<zst. xX+y =2
21 predicates are those which have an unbound quantifier (eg ax e Ns.t. vy >z, X <)

Post’s Theorem states that computably enumerable predicates are identical to 21 predicates
Validating a 21 predicate can always be reduced to validating a AO predicate with a witness

Evaluating a AO predicate always terminates

l A
LR

In 21 thinking, I'm going to write a program and
everyone on the blockchain is going to execute
this program and everyone will do the same thing
because they're running in the same environment.

With AO thinking, I'm going to run the program
myself on my computer and generate some
withess data and I'm going to have everyone only
validate that witness data instead of running the
entire program.

It's a change of attitude [...] that can be a lot more
efficient, a lot more private and save a lot of time.

Post's Theorem and Blockchain Languages: A Short Course in the Theory of Computation (2017)
by Russell O’Connor

Computation Verification

Is this mental model similar to conventional
programming? No. But smart contracts aren't
conventional programming, and blockchain
Isn't a conventional computing environment
(how often does history change out from under
most of your programs?).

These design elements make for a clean,
simple system with predicable interactions. To
the extent that they make some things "harder”
they do so mostly by exposing their latent
complexity that might otherwise be ignored.

https://www.reddit.com/r/Bitcoin/comments/4pdx6k/
comparison_between_bitcoin_and ethereums/d4k6n7d/ (2016) by Greg Maxwell

https://www.reddit.com/r/Bitcoin/comments/4pdx6k/comparison_between_bitcoin_and_ethereums/d4k6n7d/
https://www.reddit.com/r/Bitcoin/comments/4pdx6k/comparison_between_bitcoin_and_ethereums/d4k6n7d/
https://www.reddit.com/r/Bitcoin/comments/4pdx6k/comparison_between_bitcoin_and_ethereums/d4k6n7d/

The History of Script in Bitcoin

2009 - VO.1

Transaction 1 Transaction 2
txlns txOuts txlns txOuts

SS --]]]

NN

NersaRitBigwmetsta

return EvalScript(txin.scriptSig + CScript(OP_CODESEPARATOR) + txout.scriptPubKey, txTo, nIn, nHashType);

2010 - Fix bugs!

Transaction 1 Transaction 2
txlns txOuts txlns txOuts

vector<vector<unsigned char> > stack;

1f (!EvalScript(stack, scriptSig, txTo, nIn, nHashType))
return false;

i1f (!EvalScript(stack, scriptPubKey, txTo, nIn, nHashType))
return false;

if (stack.empty(Q))
return false;

return CastToBool(stack.back());

2012 - Pay To Script Hash

vector<vector<unsigned char> > stack, stackCopy;
if (!EvalScript(stack, scriptSig, txTo, nIn, nHashType))
return false; .
Transac if (fValidatePayToScriptHash) 1saCt|On 2
stackCopy = stack;
if (!EvalScript(stack, scriptPubKey, txTo, nIn, nHashType))

A return false; llI”'
if (stack.empty())
txIns return false; txOuts

1f (CastToBool(stack.back()) == false)
return false; o o

// Additional validation for spend-to-script-hash transactions:
if (fValidatePayToScriptHash && scriptPubKey.IsPayToScriptHash())

{
if (!scriptSig.IsPushOnly()) // scriptSig must be literals-only
return false; // or validation fails
const valtype& pubKeySerialized = stackCopy.back(); \»
CScript pubKey2(pubKeySerialized.begin(), pubKeySerialized.end()); | _
SCrIpt F)u popstack(stackCopy); |g COnta|nS the
haSh COor if (!EvalScript(stackCopy, pubKey2, txTo, nIn, nHashType))) Scnpt and the

return false;

spendli ooy, o) Hgptions

return CastToBool(stackCopy.back()); .
} y the

return true,;

2016 - Segregated Witness

Transaction Transaction 2
txlns txOuts txIns txOuts

)/

Script PubKey ¢© “ins a ess contains the
hash commitme e Spo .ng ?Cl‘lpt and the
| . satisfactions
spen%ﬂ%&?{}% IgB%”d'”g Check that witness
script matches satisfies the script

commitment

The Future of Contracts in Bitcoin

& Schnorr signatures and MuSig
& MAST - script trees

'{/ Taproot and Graftroot

!{é}; Adaptor signatures

Questions?

