
Contracts in Bitcoin

John Newbery, Chaincode Labs
April 8, 2020



Contracts and “Smart” Contracts

Script in Bitcoin

Contracts on a Public Blockchain

The History of Script in Bitcoin

The Future of Contracts in Bitcoin



Contracts and “Smart” Contracts



Meeting of the minds

Binding



New institutions, and new ways to formalize the 
relationships that make up these institutions, are 

now made possible by the digital revolution. I 
call these new contracts "smart", because they 

are far more functional than their inanimate 
paper-based ancestors.


A smart contract is a set of promises, specified 
in digital form, including protocols within which 

the parties perform on these promises.

Smart Contracts: Building Blocks for Digital Markets (1996) by Nick Szabo



Observability

Privacy

Verifiability

Enforceability

Objectives of contract design



Script in Bitcoin











Once version 0.1 was released, the core design 
was set in stone for the rest of its lifetime.  

Because of that, I wanted to design it to support 
every possible transaction type I could think of. 


The solution was script.  The nodes only need to 
understand the transaction to the extent of 

evaluating whether the sender's conditions are 
met.


The script is actually a predicate.  It's just an 
equation that evaluates to true or false.  Predicate 
is a long and unfamiliar word so I called it script.

https://bitcointalk.org/index.php?topic=195.msg1611#msg1611 (2010) by Satoshi Nakamoto

https://bitcointalk.org/index.php?topic=195.msg1611#msg1611


Contracts on a Public Blockchain



The Good News

Observability

Verifiability

Enforceability



Enforceability

ScalabilityPrivacy

Expressiveness

Fungibility

The Bad News



Contracts executed by explicitly published 
code are really only using the blockchain for 
one thing - to get an immutable ordering of 
what order the transactions happen in. All 

that they really care about is that their 
transaction is not reversed and not double 

spent.


All of the extra details of the contract 
execution can be done by things that are not 

blockchains.

Using chains for what they’re good for (2017) by Andrew Poelstra



Post’s Theorem

• Turing-complete languages define Computably Enumerable predicates


• In the 1930s, Emil Post defined an Arithmetic Hierarchy


• ∆0 predicates have no unbound quantifiers (eg ∀x < z ∃y < z s.t. x + y = z)


• Σ1 predicates are those which have an unbound quantifier (eg ∃x ∈ N s.t. ∀y > z , x < y)


• Post’s Theorem states that computably enumerable predicates are identical to Σ1 predicates


• Validating a Σ1 predicate can always be reduced to validating a ∆0 predicate with a witness


• Evaluating a ∆0 predicate always terminates



In Σ1 thinking, I'm going to write a program and 
everyone on the blockchain is going to execute 

this program and everyone will do the same thing 
because they're running in the same environment.


With ∆0 thinking, I'm going to run the program 
myself on my computer and generate some 

witness data and I'm going to have everyone only 
validate that witness data instead of running the 

entire program.


It's a change of attitude [...] that can be a lot more 
efficient, a lot more private and save a lot of time.

Post's Theorem and Blockchain Languages: A Short Course in the Theory of Computation (2017) 
by Russell O’Connor



ExpressiveEnforceable
Globally verifiable Selectively verifiablePublicly observable Privately observableLess fungible More fungibleLess scalable More scalableLess private More private

Computation Verification



Is this mental model similar to conventional 
programming? No. But smart contracts aren't 
conventional programming, and blockchain 
isn't a conventional computing environment 

(how often does history change out from under 
most of your programs?).


These design elements make for a clean, 
simple system with predicable interactions. To 
the extent that they make some things "harder" 

they do so mostly by exposing their latent 
complexity that might otherwise be ignored.

https://www.reddit.com/r/Bitcoin/comments/4pdx6k/
comparison_between_bitcoin_and_ethereums/d4k6n7d/ (2016) by Greg Maxwell

https://www.reddit.com/r/Bitcoin/comments/4pdx6k/comparison_between_bitcoin_and_ethereums/d4k6n7d/
https://www.reddit.com/r/Bitcoin/comments/4pdx6k/comparison_between_bitcoin_and_ethereums/d4k6n7d/
https://www.reddit.com/r/Bitcoin/comments/4pdx6k/comparison_between_bitcoin_and_ethereums/d4k6n7d/


The History of Script in Bitcoin



Transaction 2

txOutstxIns

SPKSS

Script PubKeyTransaction outputsScript SigTransaction inputsTransaction metadata

Transaction 1

txOutstxIns

SPKSS

2009 - V0.1

Spends

SS SPK

Concatenate then execute



Transaction 2

SPKSS

txOutstxInstxOutstxIns

Transaction 1

SPKSS

2010 - Fix bugs!

SS SPK

Execute scriptSig then execute scriptPubKey



Transaction 2

SPKSS

txOutstxInstxOutstxIns

Transaction 1

SPKSS

2012 - Pay To Script Hash

Script PubKey contains a 
hash commitment to the 

spending conditions

Script Sig contains the 
spending script and the 

satisfactions
Check that spending 

script matches 
commitment

Check that input 
data satisfies the 

script



Transaction 2

SPKSS Witness

txOutstxInstxOutstxIns

Transaction 1

SPKSS

2016 - Segregated Witness

Script PubKey contains a 
hash commitment to the 

spending conditions

Witness contains the 
spending script and the 

satisfactions
Check that spending 

script matches 
commitment

Check that witness 
satisfies the script



The Future of Contracts in Bitcoin



Schnorr signatures and MuSig

MAST - script trees

Taproot and Graftroot

Adaptor signatures



Questions?


