
SCRIPT
JOHN NEWBERY

@jfnewbery

github.com/jnewbery

WHAT THIS TALK WILL COVER

▸ Why we have SCRIPT

▸ The design philosophy of contracts on a blockchain

▸ A couple of SCRIPT examples

WHAT THIS TALK WON’T COVER

▸ A deep technical exploration of SCRIPT semantics

▸ An exhaustive description of common Bitcoin transactions

SCRIPT

▸ Why do we have SCRIPT?

▸ Locking and unlocking coins

▸ Pay-to-pubkey

▸ Multisig

▸ Computing -vs- Verifying

WHY SCRIPT?

WHY SCRIPT?

▸ A chain of digital signatures allows a digital coin to be
transfered between users

▸ What if I want a coin to be spendable when 2-out-of-3
people sign?

▸ What if I want a coin to be spendable when someone knows
a secret value (eg the pre-image to a hash digest)?

▸ What if I want a coin to be spendable after a certain time?

▸ ……

WHY SCRIPT?

▸ The Bitcoin whitepaper didn’t mention any ‘contracts’

▸ Satoshi added a generic scripting language that lets users
to specify their own contracts

▸ SCRIPT may have been a late additional to the Bitcoin
source code

▸ Early versions of SCRIPT were very buggy!

WHAT IS SCRIPT?

▸ A contract on Bitcoin is a predicate

▸ It takes inputs:

▸ the transaction

▸ additional data provided by the spender

▸ It returns True or False:

▸ True: the transaction is valid

▸ False: the transaction is invalid

WHAT IS SCRIPT?

▸ Contracts are implemented in Bitcoin as programs written in a
language called SCRIPT

▸ SCRIPT is a stack-based language

▸ Each item in a script either:

▸ pushes elements onto the stack; or

▸ acts on element(s) in the stack

▸ At the end of execution, if the stack is non-empty and the top
element is non-zero, then the script evaluates to True

LOCKING AND
UNLOCKING COINS

LOCKING AND UNLOCKING

▸ A transaction output (txout) is locked with conditions
under which it can be spent

▸ A transaction input (txin) refers to a previous txout and
unlocks it by proving that it satisfies the txout’s conditions

▸ The locking conditions are encoded in a scriptPubKey

▸ The unlocking proof is encoded in a scriptSig

EVALUATING SCIPTPUBKEY AND SCRIPTSIG

▸ Early versions of Bitcoin concatenated scriptSig and
scriptPubKey and then ran the combined script

▸ This was broken - anyone could spend any coin!

▸ v0.3.8 of Bitcoin fixed this by running the scipts separately
- first run scriptSig, leave the result on the stack, then run
scriptPubKey

▸ (Note that scriptSig does not need to be a script - it is only
used to place items on the stack)

EXAMPLE LOCKING CONDITIONS - P2PK

▸ The simplest scriptPubKey is called ‘Pay to pub key’ or
P2PK

▸ The condition for spending a P2PK output is signing a
message with the private key corresponding to the given
public key

▸ The message that the spender must sign is (a part of) the
transaction that spends the output

EXAMPLE LOCKING CONDITIONS - MULTISIG

▸ Multisig is used to require k-out-of-n parties to sign in
order to spend an output

▸ The condition for spending a multisig output is signing a
message with k of the private keys corresponding to the
given n public keys

▸ Each signature signs the same message - (a part of) the
transaction that spends the output

EXAMPLE LOCKING CONDITIONS - P2PKH

▸ Pay to pubkey hash (P2PKH) locks an output with the hash
digest of a public key

▸ The condition for spending a P2PKH is providing:

▸ a public key that hashes to the hash digest

▸ a signature of a message with the private key
corresponding to the given public key

EXAMPLE LOCKING CONDITIONS - P2SH

▸ Pay to script hash (P2SH) locks an output with the hash
digest of any arbitrary script

▸ The condition for spending a P2SH is providing:

▸ a SCRIPT that hashes to the hash digest

▸ the data required to satisfy the locking conditions in that
script

WHY P2SH?

▸ scriptPubKeys for P2SH are a (small) uniform size

▸ The sender does not need to know the spending
conditions for what they’re sending

▸ The receiver pays the fee for large or complex scripts

▸ A scriptPubKey can be encoded as a Bitcoin address, eg
3P14159f73E4gFr7JterCCQh9QjiTjiZrG

EXAMPLE LOCKING CONDITIONS - P2WPKH & P2WSH

▸ Segregated witness (BIP 141) introduced two new kinds of
locking scripts:

▸ Pay to witness public key hash (P2WPKH)

▸ Pay to witness script hash (P2WSH)

▸ Key difference is that the data requiered to satisfy the
conditions is carried in a separate structure called the
‘witness’

PAY-TO-PUBKEY

PAY TO PUBLIC KEY

▸ The scriptPubKey contains the public key (33 bytes for
compressed) and the OP_CHECKSIG opcode (1 byte)

▸ The scriptSig contains just a signature (~71 bytes)

OP_CHECKSIG <SIG>

scriptPubKey scriptSig stack

BEFORE EXECUTION

<PUBKEY>

<PUBKEY>

OP_CHECKSIG <SIG>

scriptPubKey scriptSig stack

AFTER SCRIPTSIG EXECUTION

<PUBKEY>

OP_CHECKSIG <SIG>

scriptPubKey scriptSig stack

SCRIPTPUBKEY EXECUTION - 1

<PUBKEY>

OP_CHECKSIG <SIG>

scriptPubKey scriptSig stack

SCRIPTPUBKEY EXECUTION - 2

1

scriptPubKey scriptSig stack

AFTER SCRIPTPUBKEY EXECUTION

MULTISIG

MULTISIG

▸ For a k-of-n multisig, the scriptPubKey contains:

▸ the number k (1 byte)

▸ all n public keys (33 bytes each for compressed)

▸ the number n (1 byte)

▸ the OP_CHECKMULTISIG opcode (1 byte)

▸ The scriptSig contains:

▸ a dummy 0 byte (1 byte)

▸ k signatures (~71 bytes each)

OP_CHECKMULTISIG

scriptPubKey scriptSig stack
BEFORE EXECUTION

3

<PUBKEY 3>

<PUBKEY 2>

<PUBKEY 1>

2

<SIG 2>

<SIG 1>

O

OP_CHECKMULTISIG

scriptPubKey scriptSig stack
AFTER SCRIPTSIG EXECUTION

3

<PUBKEY 3>

<PUBKEY 2>

<PUBKEY 1>

2

<SIG 2>

<SIG 1>

O

OP_CHECKMULTISIG

scriptPubKey scriptSig stack

SCRIPTPUBKEY EXECUTION - 1

3

<PUBKEY 3>

<PUBKEY 2>

<PUBKEY 1>

2

<SIG 2>

<SIG 1>

O

OP_CHECKMULTISIG

scriptPubKey scriptSig stack

SCRIPTPUBKEY EXECUTION - 2

3

<PUBKEY 3>

<PUBKEY 2>

<PUBKEY 1>

2

<SIG 2>

<SIG 1>

O

scriptPubKey scriptSig stack

AFTER SCRIPTPUBKEY EXECUTION

1

COMPUTING
-VS-
VERIFYING

COMPUTING AND VERIFYING

▸ A contract is a predicate

▸ Bitcoin nodes are only interested in whether a contract
evaluates to true, not the details of how it evaluates

▸ Bitcoin uses SCRIPT, which is interpreted and executed by
every node

▸ Bitcoin uses computation, but it’s really only interested in
verification

COMPUTING AND VERIFYING (SCALING)

▸ Adding more computation workload to contract execution
does not scale

▸ Verification is much easier and more scalable than
computation

▸ At the limit, a blockchain could use zero-knowledge proofs
instead of script execution

▸ At the margin, there are lots of technologies that can improve
scalabilty by only committing minimal data to the blockchain

SCALING CONTRACTS

▸ Only reveal spending conditions at time of spend  
 => P2SH or P2WSH

▸ Batch multiple payments into one on-chain commitment 
 => layer 2 (eg lightning)

▸ Only reveal the branch of the contract that was executed 
 => MAST, Taproot

▸ In the best case where everyone agrees, only broadcast a single (threshold) signature 
 => Taproot, Graftroot

▸ Combine multiple signatures into a single signature 
 => threshold signatures

▸ Embed additional conditions/committments invisibly into digital signatures 
 => adaptor signatures and scriptless scripts

SCALING AND PRIVACY/FUNGIBILITY

▸ It’s no coincidence that these scaling techniques are also
good for privacy and fungibility:

▸ less data on the blockchain => better privacy

▸ more uniform transactions => better fungibility

IN CONCLUSION

▸ A Bitcoin output can be locked with a contract

▸ A contract is a predicate - it takes the transaction and
additional data provided by the spender and returns True
or False

▸ Bitcoin uses SCRIPT to encode contracts and the witness
data

▸ SCRIPT is a stack-based language that executes on all
nodes

▸ A blockchain is for verifying, not for computing

