
BLOCKS AND THE BLOCKCHAIN
JOHN NEWBERY

@jfnewbery

github.com/jnewbery

ABOUT ME

Live in New York

Work for Chaincode Labs

Contribute to Bitcoin Core

github.com/jnewbery

BLOCKS AND THE BLOCKCHAIN

▸ Why do we need a blockchain?

▸ What is proof-of-work? What is mining?

▸ What is difficulty? How do difficulty re-adjustments happen?

▸ How are new Bitcoin?

▸ What does a block look like? What’s in a block header?

▸ How are transactions included in a block?

▸ How do we agree on what the current blockchain is?

▸ How have blocks changed with Segregated Witness (SegWit)?

WHY DO WE NEED
A BLOCKCHAIN?

THE DOUBLE SPEND PROBLEM

▸ Bitcoin transactions are self-validating

▸ Everyone can verify that a Bitcoin transaction is valid

▸ Alice pays Bob by:

▸ using some of her unspent coins

▸ signing with her private key

▸ Alice can create a second transaction paying Carol with the same
unspent coins. That’s also a valid transaction!

▸ This is called the ‘double spend’ problem

THE DOUBLE SPEND PROBLEM (PART 2)

▸ If Alice has the private keys for her unspent coins, she can
sign as many times as she wants

▸ If there’s no way to know which coins have already been
spent, there is no way to prevent double spends

▸ We need a way for everyone to agree which coins have
been spent already

▸ We need to agree on the ordering of transactions

THE DOUBLE SPEND PROBLEM (PART 3)

▸ Ordering transactions is easy in a centralized system: trust
a third party to do it!

▸ Banks, credit card companies, etc are third parties

▸ Nobody knew how to create a shared ledger without a
trusted third party until…

“…the main benefits are lost if a trusted third party is
still required to prevent double-spending. We
propose a solution to the double-spending problem
using a peer-to-peer network. The network
timestamps transactions by hashing them into an
ongoing chain of hash-based proof-of-work, forming
a record that cannot be changed without redoing the
proof-of-work…"

A SOLUTION TO THE DOUBLE SPEND PROBLEM!

▸ Distribute the ledger amongst everyone on the network

▸ Nodes take it in turn to add a new ‘page’ to the ledger.

▸ In Bitcoin we call this page of transactions a block

▸ Who gets to add the next block is determined by a hash-
based proof-of-work contest.

▸ This is described in the whitepaper as ‘one-CPU-one-vote’

MAKING A CHAIN OF BLOCKS

▸ The proof-of-work over the blocks commits the block to
the transactions and to the previous block

▸ A block can’t be changed without redoing the work of that
block

▸ A buried block can’t be changed without redoing the
combined work for that block and all the blocks after it

PROOF OF WORK
AND MINING

PROOF-OF-WORK

▸ Satoshi’s solution to the double spend problem

▸ Based on Adam Back’s hashcash and other earlier proof-
of-work schemes

▸ Requires the miner to do computational work in order to
discover a new block

CRYPTOGRAPHIC HASH FUNCTIONS

▸ A hash function is a function that takes an arbitrary-length input message and
outputs a fixed-length digest

▸ A cryptographic hash function has additional properties:

▸ it is infeasible to generate a message from its hash value (preimage resistance)

▸ a small change to a message results in a completely different digest
(avalanche effect)

▸ it is infeasible to find two different messages with the same hash value
(collision resistance)

▸ A cryptographic hash function is a one-way function. To an observer, the outputs
of the hash function look like random numbers

CRYPTOGRAPHIC HASH FUNCTIONS

▸ A cryptographic hash function is a one-way function. To an
observer, the outputs of the hash function look like
random numbers

▸ Try it now: find the digest of “devplusplus”

SHA 256

▸ SHA256 is a cryptographic hash function that maps inputs to 256 bit
outputs

▸ Those outputs are essentially randomly distributed:

▸ Half of all possible messages will hash to 0b0… and half of all possible
messages will hash to 0b1…

▸ One fourth of all messages will hash to 0b00…

▸ One eighth of all messages will hash to 0b000…

▸ …

▸ In general, 1 out of 2X messages will hash to a digest with x leading zeroes

PROOF-OF-WORK OVER A MESSAGE (1)

▸ To do proof-of-work over a message:

1. Append some random bits to the end of the message.
We call those bits a nonce (a number used once). For
now, let’s call <message|nonce> a block

2. Hash the block using SHA256

3. If the digest starts with the target number of zeroes,
the block is valid. If not, the block is invalid - go to (1)
and try with a different nonce

PROOF-OF-WORK OVER A MESSAGE (2)

▸ If the difficulty target is 4 zeroes, then on average we’ll need
to try 16 different nonces to find a valid block

▸ An observer only needs to do one hash to verify that the
block is valid

▸ Try it now:

▸ Find a valid block for the message “devplusplus” with 4
bits of difficulty

▸ Validate your neighbor’s block

BITCOIN MINING

▸ Bitcoin mining uses the exact mechanism. Miners try lots
of different nonces until they discover a valid block

▸ Miners do work over the Bitcoin block header. The nonce
is the final 4 bytes of that header*

▸ The current difficulty on the bitcoin network requires ~70
leading zeroes 
 
* note that this isn’t enough nonce space, so they use part of the coinbase transaction for additional entropy.

MINING AND THE BLOCKCHAIN

▸ The block header includes the hash of the previous block

▸ By mining a new block, the miner is doing work over the
entire chain

▸ Mining is a race to extend the chain. When a miner
discovers a block, he/she transmits it to the network and
other miners start trying to build a block on top of it

DIFFICULTY

WHY DOES DIFFICULTY CHANGE?

▸ Satoshi designed the Bitcoin system to produce blocks on
average every ten minutes

▸ As more miners start mining Bitcoin and technology
advances, the network hash rate increases

▸ If difficulty remained the same, blocks would be
discovered more and more quickly

▸ At today’s network hash rate, blocks of difficulty 1 would
be discovered every 0.0000000004 seconds

HOW IS DIFFICULTY VALIDATED?

▸ The block header contains a 4-byte difficulty bits field.

▸ The double-sha256 hash of the header is checked against
the difficulty bits.

▸ This is a non-contextual check

▸ This difficulty bits field is checked against the blockchain
timestamps

▸ This is a contextual check

DIFFICULTY BITS EXPLAINED

▸ The difficulty bits field is 4-bytes, little-endian. e.g.
0xe93c0118

▸ The first byte 0x18 (24 in decimal) is the exponent

▸ The next three bytes 0x013ce9 is the coefficient

▸ The target is given by the formula: coefficient x 2(8 x (exponent - 3))

▸ For our example, the target is: 
0x013ce9 x 2(8 x (24 - 3)) = 0x0000000000000000013ce900

▸ What is the current target on the Bitcoin mainnet?

DIFFICULTY (1)

▸ Block explorers sometimes express difficulty as a multiple
of the lowest possible difficulty, e.g.: 

DIFFICULTY (2)

▸ The lowest allowed difficulty corresponds to difficulty bits
0xffff001d, which corresponds to target:  
65535 x 2(8 x (29- 3)) = 0x00000000ffff00

▸ Divide the lowest allowed difficulty by the block’s
“difficulty” to get the target:  
65535 x 2(8 x (29- 3)) / 888,171,856,257.3 ~=
0x0000000000000000013ce900

▸ Note that ‘Difficulty’ is rounded so this won’t give you the
exact target.

▸ What is the current difficulty on the Bitcoin main net?

HOW DOES DIFFICULTY CHANGE? (1)

▸ To keep blocks at ten minute intervals, the Bitcoin network
retargets its difficulty every 2016 blocks

▸ 2016 blocks should take 20160 minutes

▸ If the previous 2016 blocks took longer than 20160
minutes, make the target easier

▸ If the previous 2016 blocks took shorter than 20160
minutes, make the target harder

HOW DOES DIFFICULTY CHANGE? (2)

▸ Retargeting done automatically by the Bitcoin network.

▸ The timestamps are taken from block 0 and block 2015 in
the previous retarget window:

▸ There’s an off-by-one bug! Why don’t we fix that bug?

▸ The miner who discovers block 2015 has the chance to
slightly change the difficulty of the next window.

▸ Try it now: calculate the difficulty for block 491904

HOW DOES DIFFICULTY CHANGE? (3)

▸ The difficulty adjustment algorithm was set in place by Satoshi

▸ There’s a maximum difficulty change of ±4x for each retarget

▸ The algorithm isn’t tolerant to large changes in network hash rate. For example,
if network hash rate drops by 90%:

▸ Blocks will be discovered every 100 minutes

▸ It will take 20 weeks to reach the next retarget

▸ At the next retarget, difficulty will drop to ¼ , so blocks will be discovered
every 25 minutes

▸ Attempts to ‘fix’ this in other coins have often caused their own problems (eg
Bitcoin Cash’s Emergency Difficulty Adjustment)

HOW ARE NEW
BITCOINS CREATED?

WHY DO MINERS MINE?

▸ Mining is very expensive:

▸ Mining equipment (ASICs) cost thousands of dollars

▸ Mining requires a lot of electricity (and cooling)

▸ Labor costs can be high

▸ So why do miners mine?  
 
Hint: it’s not from the benevolence of the miner that we expect our blocks …

…BUT FROM THEIR REGARD TO THEIR OWN INTEREST*

▸ Miners are rewarded for their efforts

▸ Each block contains a reward or block subsidy, which is paid out to the miner in the
coinbase transaction.

▸ Initially, the reward was 50 Bitcoin per block.

▸ After 210,000 blocks (approx 4 years), the reward was halved** to 25 Bitcoin per block.

▸ At height 420,000 the reward was halved again to 12.5 Bitcoin per block.

▸ After 33 halvings (6,930,000 blocks) the reward is zero.

▸ What is the total supply of Bitcoin?  
 
* with apologies to Adam Smith 
** unofficially called a ‘halvening’

WHAT HAPPENS WHEN THE BITCOIN RUN OUT?

▸ Miners are also rewarded with the transaction fees of all the
transactions they include in their block

▸ Miners choose transactions to include in a block based on their
fee rate (amount of fee divided by transaction size)

▸ When blocks aren’t full, these fees are very low, since there isn’t
competition for block space

▸ As demand for block space increases, fees rise

▸ What happens to the system as the subsidy decreases is an open
question!

BLOCK
STRUCTURE

BLOCKS AND BLOCK HEADERS

▸ Blocks consist of:

▸ A block header: information about the block (80 bytes)

▸ The transactions: the serialized transactions in the block
(up to 1MB before SegWit, up to 4MB after SegWit)

BLOCKS HEADERS

▸ Blocks headers contain:

▸ The block version (4 bytes)

▸ The hash of the previous block (32 bytes)

▸ The Merkle root of the transactions in the block (32 bytes)

▸ The difficulty bits (4 bytes)

▸ The timestamp of the block (4 bytes)

▸ The nonce (4 bytes)

THE COINBASE
TRANSACTION

THE COINBASE TRANSACTION

▸ The first transaction in every block is the coinbase
transaction

▸ A block must have exactly one coinbase transaction

▸ The coinbase transaction spends no UTXOs

▸ The coinbase transaction produces new coins

▸ The coinbase transaction also collects the transaction fees
for all the transactions in the block

THE COINBASE TXIN

▸ A coinbase transaction has only one input

▸ The outpoint is null (prev transaction is 0, index is -1)

▸ The scriptSig starts with the block height (BIP34) and can
be up to 100 bytes.

THE COINBASE TXOUTS

▸ A coinbase can have many outputs

▸ The transaction outputs add up to the block reward plus
the sum of all transaction fees in the block

▸ Since SegWit activation, one of the outputs must commit
to the witness root (full details later)

HOW ARE
TRANSACTIONS
INCLUDED IN A BLOCK?

SERIALIZED BLOCK (1)

▸ Blocks are transmitted over the P2P network in
MSG_BLOCK or MSG_WITNESS_BLOCK messages.

▸ The message contains a ‘serialized block’:

▸ block header (80 bytes)

▸ transaction count (compact size int)

▸ serialized transactions

SERIALIZED BLOCK (2)

▸ Question 1: what stops a malicious node from changing
the transaction in the block?

TRANSACTION COMMITMENT (2)

▸ Answer: The block header commits to the transactions

▸ It’s not possible to change the transactions in the block
without changing the block header

▸ Changing just one bit of the block header requires
redoing the proof-of-work

▸ Question 2: how do we fit 1MB of transactions into a 80
byte header?

TRANSACTION COMMITMENT (2)

▸ Answer: the transactions are hashed into a 32 byte digest.

▸ One commitment scheme would be to put the entire 1MB
of serialized transactions through a round of SHA256

TRANSACTION MERKLE ROOT

▸ A more useful commitment scheme is to use a Merkle tree

▸ Each tx is individually hashed to produce a digest

▸ The digests are paired and hashed again to produce a
second level digest

▸ This step is repeated until only one digest remains, called
the Merkle root

▸ The Merkle root identifies the whole set in just a 32 bytes

MERKLE TREE

PROOFS OF INCLUSION

▸ A Merkle tree permits a compact proof-of-inclusion

▸ A prover can show that a transaction is included in the
block with a Merkle proof

▸ The Merkle proof contains the path through the Merkle
tree to the transaction

▸ Note that the transaction Merkle root does not permit a
proof-of-exclusion

MERKLE PROOF

SIMPLE PAYMENT VERIFICATION

▸ Simple Payment Verification (SPV) wallets make use of
Merkle proofs

▸ The SPV wallet asks a full node for proof that a transaction
is in the blockchain

▸ A prover provides a headers chain and a Merkle proof to
show that a transaction exists

▸ Since there is no proof-of-exclusion, a prover can ‘lie by
omission’ and not reveal the presence of a transaction

FORKS AND 
RE-ORGS

HOW IS CONSENSUS REACHED?

“The majority decision is represented by the longest
chain, which has the greatest proof-of-work effort
invested in it. If a majority of CPU power is controlled
by honest nodes, the honest chain will grow the
fastest and outpace any competing chains…”

Question: where’s the obvious bug?

WHAT IS THE CORRECT CHAIN?

▸ The valid chain with the most accumulated work is
considered the correct chain

▸ If there are two chains with the same accumulated work,
the tie-break is which chain was seen first

CHAIN FORK (1)

▸ Temporary hain forks are an expected and regular occurrence
on Bitcoin

▸ Block discovery is a random process

▸ Occasionally two miners will discover blocks at the same time

▸ Some nodes see block A first and other nodes see block B
first

▸ One-block chain forks happen once or twice a month on the
network

CHAIN FORK (2)

RESOLVING A CHAIN FORK (1)

▸ When the chain forks, miners will start building on top of
one of the two tips

▸ Once a miner finds a block on one of the tips, that chain
becomes the most-work chain

▸ Nodes that were on the other tip will re-org to the new
most-work chain

RESOLVING A CHAIN FORK (2)

RE-ORGS

▸ A re-org involves rewinding one or more blocks, and then
applying the blocks on the other side of the fork

▸ Nodes must store information about how to rewind their
most recent blocks

▸ Bitcoin Core stores this rewind information in
revxxxxx.dat files

SEGREGATED
WITNESS

SEGWIT TRANSACTION SERIALIZATION

▸ SegWit adds two new P2P messages - MSG_WITNESS_TX and
MSG_WITNESS_BLOCK

▸ MSG_WITNESS_TX serializes the transaction with the witness 
 
 
 

▸ MSG_WITNESS_BLOCK is the same as MSG_BLOCK, but the
transactions with witnesses are serialized with their witnesses.

▸ See BIP 144 for full details

THE WITNESS COMMITMENT

▸ Since SegWit activation, one of the outputs of the coinbase
transaction must commit to the witness root

▸ The commitment is an OP_RETURN, followed by
0x24aa21a9ed, followed by the Merkle root of the witnesses in
the block

▸ This commitment is placed in the scriptPubKey of one of the
coinbase transaction outputs (if two scriptPubKeys match this
pattern, use the one from the highest index output)

▸ See BIP 141 for full details

