
Wallet development

What are a wallet’s functions?
● Key management

○ Identify owned transactions
○ Generating new addresses
○ Determining how to sign transactions

● Constructing and sending transactions
○ Parsing addresses and turning them into txOuts
○ Selecting UTXOs (coin selection)
○ Signing inputs

● Persistence
○ Storing keys
○ Storing UTXOs
○ Storing transaction history
○ Storing metadata (eg how far through the blockchain have I parsed?)

Glossary
● pubkey - a public key, used to verify signatures. A point on the secp256k1 curve.

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/pubkey.h#L30)

● privkey - a private key, kept secret and used to sign data. A scalar in the secp256k1
group.
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/key.h#L27)

● CKeyID - a key identifier, which is the RIPEMD160(SHA256(pubkey)). This is the hash
used to create a P2PKH or P2WPKH address.
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/pubkey.h#L20)

● CTxDestination - a txout script template with a specific destination. Defined in
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/script/standard.h#L139) Stored as a variant variable. Can be a:

○ CNoDestination: no destination set
○ CKeyID: TX_PUBKEYHASH destination (P2PKH)
○ CScriptID: TX_SCRIPTHASH destination (P2SH)
○ WitnessV0ScriptHash: TX_WITNESS_V0_SCRIPTHASH destination (P2WSH)
○ WitnessV0KeyHash: TX_WITNESS_V0_KEYHASH destination (P2WPKH)

https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L30
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L30
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.h#L27
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.h#L27
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L20
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L20
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/standard.h#L139
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/standard.h#L139


Initialization and Interfaces
● The wallet component is initialized through the WalletInitInterface:

https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/walletinitinterface.h. This virtual interface is defined for all bitcoind builds.

● For builds with wallet, the interface is overridden in src/wallet/init:
https://github.com/bitcoin/bitcoin/blob/master/src/wallet/init.cpp#L16

● For `--disable-wallet` builds, a dummy interface is defined in src/dummywallet.cpp:
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/dummywallet.cpp#L15

● Those initiation interface methods are called during node initialization, eg:
https://github.com/bitcoin/bitcoin/blob/44d81723236114f9370f386f3b3310477a6dde43/sr
c/init.cpp#L1288

● WalletInit::Construct() adds a client interface for the wallet.
● The node then tells the wallet to load/start/stop/etc through the ChainClient interface in

src/interfaces/wallet.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/interfaces/wallet.cpp#L504

● Most of those methods in that interface call through to functions in src/wallet/load.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/wallet/load.cpp

● The node holds a WalletImpl interface to call functions on the wallet
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/interfaces/wallet.cpp#L122.

● The wallet holds a Chain interface, which is used by the wallet to call functions on the
node
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/interfaces/chain.cpp#L244.

● The node notifies the wallet about new transactions and blocks through the Validation
Interface
(https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/
src/validationinterface.h#L72 and
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/interfaces/chain.cpp#L162)

Why all this indirection?
To fully separate the wallet from the node:

● Well defined interface is easier to reason about
● Individual components can be tested in isolation
● Separate wallet into a different process

https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/walletinitinterface.h
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/walletinitinterface.h
https://github.com/bitcoin/bitcoin/blob/master/src/wallet/init.cpp#L16
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/dummywallet.cpp#L15
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/dummywallet.cpp#L15
https://github.com/bitcoin/bitcoin/blob/44d81723236114f9370f386f3b3310477a6dde43/src/init.cpp#L1288
https://github.com/bitcoin/bitcoin/blob/44d81723236114f9370f386f3b3310477a6dde43/src/init.cpp#L1288
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L504
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L504
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/wallet/load.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/wallet/load.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L122
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L122
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L244
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L244
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/validationinterface.h#L72
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/validationinterface.h#L72
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L162
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L162


● Potential for different wallet implementations

Code Management
● coinselection.cpp|h - Coin selection algorithm
● crytper.cpp|h - encrypting the wallet’s private keys
● [wallet]db.cpp|h - interface to wallet’s database for persistent storage
● init.cpp - initializing the wallet module
● load.cpp|h - loading/starting/stopping individual wallets
● rpc*.cpp|h - wallet’s RPC interface
● wallettool.cpp|h - standalone wallet tool binary
● wallet.cpp|h - EVERYTHING ELSE

Key Management

Identify Owned Transactions
● When a transaction is added to the mempool, or a block is connected, the wallet is

notified through the validation interface:
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/s
rc/wallet/wallet.cpp#L1232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/s
rc/wallet/wallet.cpp#L1251

● The wallet needs to know if the transaction belongs to it. That happens in
SyncTransaction(),
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L1222), which calls AddToWalletIfInvolvingMe()
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L1040)

● The magic happens in IsMine()
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L1061
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/s
rc/script/ismine.cpp#L175)

● This takes the scriptPubKey, interprets it as a Destination type, and then checks whether
we have the key(s) to watch/spend the coin.

● This is overly complicated, inefficient due to pattern matching, not selective, and not
scalable. (https://gist.github.com/sipa/125cfa1615946d0c3f3eec2ad7f250a2)

Generating Addresses
● The Bitcoin Core wallet was originally a collection of unrelated private keys
● If a new address was required, a new private key could be generated

https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1251
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1251
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1222
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1222
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1040
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1040
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1061
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1061
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/ismine.cpp#L175
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/ismine.cpp#L175
https://gist.github.com/sipa/125cfa1615946d0c3f3eec2ad7f250a2


● What are the problems with this?
● Giving an address out and then restoring from a backup loses funds!

Keypools
● Introduced by Satoshi in 2010

(https://github.com/bitcoin/bitcoin/commit/103849419a9c014a69c76b6f96e48b66cbc838
ca)

● Cache (100) private keys before they’re needed
● When a new public key is needed (either for address or change), draw it from the

keypool and refresh the pool
● (Also allows an encrypted wallet to give out an address without unlocking)

HD Wallets
● A minimal HD wallet implementation was added to Bitcoin Core in 2016

(https://github.com/bitcoin/bitcoin/pull/8035)
● A new HD seed is set

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L1486) on first run or when upgrading the wallet
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L4094)

● Restoring old backups can no longer definitively lose funds (since all private keys can be
rederived).

● However, if many addresses were used since the backup, then the wallet may not know
how far ahead in the HD chain to look for its addresses.

● The keypool essentially became an address look-ahead pool. It is used to implement a
'gap limit'.

Generating Keys
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wall
et/wallet.cpp#L190)

● For HD wallets, new keys are derived using the BIP32 HMAC derivation scheme
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L227)

● For non-HD wallets, strong randomness is used to generate a new key
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/key.cpp#L157)

● In both cases, we test the new key by signing a message
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/key.cpp#L232)

● We save the key to the DB before using it
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L221)

https://github.com/bitcoin/bitcoin/commit/103849419a9c014a69c76b6f96e48b66cbc838ca
https://github.com/bitcoin/bitcoin/commit/103849419a9c014a69c76b6f96e48b66cbc838ca
https://github.com/bitcoin/bitcoin/pull/8035
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1486
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1486
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L4094
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L4094
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L227
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L227
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L157
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L157
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L221
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L221


Constructing and Sending Transactions

Parsing addresses and Constructing Transactions
● Sending from the wallet happens through the RPC or GUI

○ sendtoaddress
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44c
d46fed/src/wallet/rpcwallet.cpp#L345)

○ sendmany
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44c
d46fed/src/wallet/rpcwallet.cpp#L800)

○ {create,fund,sign,send}rawtransaction
● The address is decoded into a CDestination

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/key_io.cpp#L73)

● Other parameters can be added for finer control (RBF, fees, etc)
● The wallet creates the transaction in CreateTransaction()

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L2733)

Selecting UTXOs (coin selection)
● By default, coin selection is automatic
● The logic starts in CWallet:SelectCoins()

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L2480)

● By preference, we choose coins with more confirmations
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L2550)

● The actual logic for selecting which UTXOs to use is in coinselection.cpp, which
implements the branch and bound algorithm
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/coinselection.cpp#L21)

● If that fails, we fall back to using the old KnapsackSolver
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/coinselection.cpp#L216)

● Manual coin selection (Coin Control) is possible. See the CCoinControl structure
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/coincontrol.h#L16).

https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L345
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L345
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L800
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L800
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key_io.cpp#L73
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key_io.cpp#L73
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2733
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2733
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2480
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2480
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2550
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2550
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L21
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L21
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L216
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L216
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coincontrol.h#L16
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coincontrol.h#L16


Signing inputs
● Signing is (almost) the last step in CreateTransaction()

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L3055)

● The CWallet is an implementation of the SigningProvider interface
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/keystore.h#L19)

● The signing logic for the SigningProvider is all in src/script/sign.cpp
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/script/sign.cpp#L190)

Sending Transactions
● The wallet saves and broadcasts the wallet in CommitTransaction()

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L3100)

● The transaction is added to the mempool over the submitToMemoryPool() interface
method
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/interfaces/chain.cpp#L152) and relayed on the network in the relayTransaction()
method
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/interfaces/chain.cpp#L293)

Persistence
● Bitcoin Core wallet uses berkeley db for storage

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.h#L22)

● db.cpp|h is for the low-level interaction with bdb (eg setting up
environment/opening/closing database, batch writes, etc)
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/db.cpp). walletdb.cpp|h is for higher-level database read/write/erase
operations
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.cpp).

● bdb is a key-value store. There’s no database schema.
● Keys are a type (eg “tx”) followed by an identifier (eg txid). The value is the serialized

data
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.cpp#L50).

https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3055
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3055
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/keystore.h#L19
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/keystore.h#L19
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/sign.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/sign.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3100
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3100
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L152
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L152
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L293
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L293
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L22
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L22
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/db.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/db.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L50
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L50


● Object serialization code is in wallet.h
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.h#L206) and walletdb.h
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.h#L74)

● Additional deserialization logic in walletdb.cpp
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.cpp#L206)

Future Directions
● Descriptor-based wallets (https://github.com/bitcoin/bitcoin/pull/15764)
● Hardware wallet integration (https://github.com/bitcoin-core/HWI)
● Improve wallet<->node interface

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/interfaces/chain.h#L37)

● Separate wallet into separate process (https://github.com/bitcoin/bitcoin/pull/10102)
● Different backend storage?
● Re-implementation?

https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.h#L206
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.h#L206
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L74
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L74
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L206
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L206
https://github.com/bitcoin/bitcoin/pull/15764
https://github.com/bitcoin-core/HWI
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.h#L37
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.h#L37
https://github.com/bitcoin/bitcoin/pull/10102

