Wallet development

What are a wallet’s functions?

Key management
o Identify owned transactions
o Generating new addresses
o Determining how to sign transactions
Constructing and sending transactions
o Parsing addresses and turning them into txOuts
o Selecting UTXOs (coin selection)
o Signing inputs
Persistence
Storing keys
Storing UTXOs
Storing transaction history
Storing metadata (eg how far through the blockchain have | parsed?)

o

o O O

Glossary

pubkey - a public key, used to verify signatures. A point on the secp256k1 curve.
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/pubkey.h#L 30)

privkey - a private key, kept secret and used to sign data. A scalar in the secp256k1
group.
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/key.h#l 27)
CKeylID - a key identifier, which is the RIPEMD160(SHA256(pubkey)). This is the hash

used to create a P2PKH or P2WPKH address.

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/pubkey.h#L 20)

CTxDestination - a txout script template with a specific destination. Defined in

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/script/standard.h#L.139) Stored as a variant variable. Can be a:

o CNoDestination: no destination set

CKeyID: TX_PUBKEYHASH destination (P2PKH)

CScriptID: TX_SCRIPTHASH destination (P2SH)

WitnessVO0ScriptHash: TX WITNESS V0 _SCRIPTHASH destination (P2WSH)
WitnessVOKeyHash: TX WITNESS V0 _KEYHASH destination (P2WPKH)

o O O O


https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L30
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L30
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.h#L27
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.h#L27
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L20
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/pubkey.h#L20
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/standard.h#L139
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/standard.h#L139

Initialization and Interfaces

e The wallet component is initialized through the Walletlnitinterface:
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/walletinitinterface.h. This virtual interface is defined for all bitcoind builds.

e For builds with wallet, the interface is overridden in src/wallet/init:
https://github.com/bitcoin/bitcoin/blob/master/src/wallet/init.cpp#lL 16

e For --disable-wallet’ builds, a dummy interface is defined in src/dummywallet.cpp:
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/dummywallet.cpp#L15

e Those initiation interface methods are called during node initialization, eg:
https://github.com/bitcoin/bitcoin/blob/44d81723236114f9370f386f3b3310477a6dde43/sr

c/init.cpp#L.1288
Walletlnit::Construct() adds a client interface for the wallet.

The node then tells the wallet to load/start/stop/etc through the ChainClient interface in
src/interfaces/wallet.cpp

https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/interfaces/wallet.cpp#L504

e Most of those methods in that interface call through to functions in src/wallet/load.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/wallet/load.cpp

e The node holds a Walletimpl interface to call functions on the wallet
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s

rc/interfaces/wallet.cpp#L122.
e The wallet holds a Chain interface, which is used by the wallet to call functions on the

node
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s

rc/interfaces/chain.cpp#L.244.
e The node notifies the wallet about new transactions and blocks through the Validation

Interface
(https://qgithub.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/
src/validationinterface.h#L 72 and
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/s
rc/interfaces/chain.cpp#L.162)

Why all this indirection?

To fully separate the wallet from the node:

e Well defined interface is easier to reason about
e Individual components can be tested in isolation
e Separate wallet into a different process


https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/walletinitinterface.h
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/walletinitinterface.h
https://github.com/bitcoin/bitcoin/blob/master/src/wallet/init.cpp#L16
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/dummywallet.cpp#L15
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/dummywallet.cpp#L15
https://github.com/bitcoin/bitcoin/blob/44d81723236114f9370f386f3b3310477a6dde43/src/init.cpp#L1288
https://github.com/bitcoin/bitcoin/blob/44d81723236114f9370f386f3b3310477a6dde43/src/init.cpp#L1288
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L504
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L504
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/wallet/load.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/wallet/load.cpp
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L122
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/wallet.cpp#L122
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L244
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L244
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/validationinterface.h#L72
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/validationinterface.h#L72
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L162
https://github.com/bitcoin/bitcoin/blob/f792395d13aa99ce51887db14e4f77a746d910e3/src/interfaces/chain.cpp#L162

Potential for different wallet implementations

Code Management

coinselection.cpp|h - Coin selection algorithm

crytper.cpp|h - encrypting the wallet’s private keys

[wallet]db.cpp]|h - interface to wallet’'s database for persistent storage
init.cpp - initializing the wallet module

load.cpplh - loading/starting/stopping individual wallets

rpc*.cpp|h - wallet's RPC interface

wallettool.cpp|h - standalone wallet tool binary

wallet.cpp|h - EVERYTHING ELSE

Key Management

Identify Owned Transactions

When a transaction is added to the mempool, or a block is connected, the wallet is
notified through the validation interface:

https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/s
rc/wallet/wallet.cpp#l 1232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/s

rc/wallet/wallet.cpp#L.1251
The wallet needs to know if the transaction belongs to it. That happens in

SyncTransaction(),
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/wallet/wallet.cpp#l. 1222), which calls AddToWalletlflnvolvingMe()
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/wallet/wallet.cpp#l 1040)
The magic happens in IsMine()

(https://qithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/

src/wallet/wallet.cpp#L.1061
https://aithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/s

re/script/ismine.cpp# 175)

This takes the scriptPubKey, interprets it as a Destination type, and then checks whether
we have the key(s) to watch/spend the coin.

This is overly complicated, inefficient due to pattern matching, not selective, and not

scalable. (https://qist.github.com/sipa/125cfal1615946d0c3f3eec2ad7f250a2)

Generating Addresses

The Bitcoin Core wallet was originally a collection of unrelated private keys
If a new address was required, a new private key could be generated


https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1251
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1251
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1222
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1222
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1040
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1040
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1061
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1061
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/ismine.cpp#L175
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/ismine.cpp#L175
https://gist.github.com/sipa/125cfa1615946d0c3f3eec2ad7f250a2

What are the problems with this?
Giving an address out and then restoring from a backup loses funds!

Keypools

Introduced by Satoshi in 2010
(https://qithub.com/bitcoin/bitcoin/commit/103849419a9c014a69c76b6f96e48b66cbc838
ca)

Cache (100) private keys before they’re needed

When a new public key is needed (either for address or change), draw it from the
keypool and refresh the pool

(Also allows an encrypted wallet to give out an address without unlocking)

HD Wallets

A minimal HD wallet implementation was added to Bitcoin Core in 2016

(https://github.com/bitcoin/bitcoin/pull/8035)
A new HD seed is set

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L.1486) on first run or when upgrading the wallet
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/wallet/wallet.cpp#L.4094)
Restoring old backups can no longer definitively lose funds (since all private keys can be

rederived).

However, if many addresses were used since the backup, then the wallet may not know
how far ahead in the HD chain to look for its addresses.

The keypool essentially became an address look-ahead pool. It is used to implement a
‘gap limit'.

Generating Keys
(https://qithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/src/wall

et/wallet.cpp#L.190)

For HD wallets, new keys are derived using the BIP32 HMAC derivation scheme
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L 227)

For non-HD wallets, strong randomness is used to generate a new key
(https://qithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/key.cpp#L157)

In both cases, we test the new key by signing a message
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/key.cpp#L.232)
We save the key to the DB before using it

(https://qithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/wallet/wallet.cpp#L.221)



https://github.com/bitcoin/bitcoin/commit/103849419a9c014a69c76b6f96e48b66cbc838ca
https://github.com/bitcoin/bitcoin/commit/103849419a9c014a69c76b6f96e48b66cbc838ca
https://github.com/bitcoin/bitcoin/pull/8035
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1486
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L1486
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L4094
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L4094
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L227
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L227
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L157
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L157
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key.cpp#L232
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L221
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L221

Constructing and Sending Transactions

Parsing addresses and Constructing Transactions

e Sending from the wallet happens through the RPC or GUI

o sendtoaddress
(https://qgithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44¢c
d46fed/src/wallet/rpcwallet.cpp#L 345)

o sendmany
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44c
d46fed/src/wallet/rpcwallet.cpp#L.800)

o {create,fund,sign,send}rawtransaction

e The address is decoded into a CDestination
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/key i0.cpp#L.73)

Other parameters can be added for finer control (RBF, fees, etc)

The wallet creates the transaction in CreateTransaction()
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L.2733)

Selecting UTXOs (coin selection)

By default, coin selection is automatic
The logic starts in CWallet:SelectCoins()

(https://qgithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.cpp#L.2480)

e By preference, we choose coins with more confirmations
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/wallet/wallet.cpp#L.2550)
e The actual logic for selecting which UTXOs to use is in coinselection.cpp, which

implements the branch and bound algorithm

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/coinselection.cpp#L21)

e |[f that fails, we fall back to using the old KnapsackSolver
(https://qgithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/coinselection.cpp#L216)

e Manual coin selection (Coin Control) is possible. See the CCoinControl structure

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/coincontrol.h#L 16).


https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L345
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L345
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L800
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/rpcwallet.cpp#L800
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key_io.cpp#L73
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/key_io.cpp#L73
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2733
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2733
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2480
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2480
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2550
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L2550
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L21
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L21
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L216
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coinselection.cpp#L216
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coincontrol.h#L16
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/coincontrol.h#L16

Signing inputs

Signing is (almost) the last step in CreateTransaction()
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/

src/wallet/wallet.cpp#L 3055)
The CWallet is an implementation of the SigningProvider interface

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/keystore.h#L19)

The signing logic for the SigningProvider is all in src/script/sign.cpp
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/

src/script/sign.cpp#L.190)

Sending Transactions

The wallet saves and broadcasts the wallet in CommitTransaction()

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/wallet/wallet.cpp#L.3100)

The transaction is added to the mempool over the submitToMemoryPool() interface
method
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/interfaces/chain.cpp#L.152) and relayed on the network in the relayTransaction()
method
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/interfaces/chain.cpp#L.293)

Persistence

Bitcoin Core wallet uses berkeley db for storage
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.h#L 22)

db.cpp|h is for the low-level interaction with bdb (eg setting up
environment/opening/closing database, batch writes, etc)
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/db.cpp). walletdb.cpplh is for higher-level database read/write/erase
operations

(https://qgithub.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/wallet/walletdb.cpp).
bdb is a key-value store. There’s no database schema.

Keys are a type (eg “tx”) followed by an identifier (eg txid). The value is the serialized
data

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/walletdb.cpp#L.50).


https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3055
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3055
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/keystore.h#L19
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/keystore.h#L19
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/sign.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/script/sign.cpp#L190
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3100
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.cpp#L3100
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L152
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L152
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L293
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.cpp#L293
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L22
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L22
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/db.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/db.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L50
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L50

e Object serialization code is in wallet.h

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/wallet/wallet.h#L.206) and walletdb.h

(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44 cd46fed/
src/wallet/walletdb.h#l 74)

e Additional deserialization logic in walletdb.cpp
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/

src/wallet/walletdb.cpp#L.206)

Future Directions

Descriptor-based walllets (https://github.com/bitcoin/bitcoin/pull/15764)

Hardware wallet integration (https://github.com/bitcoin-core/HWI)

Improve wallet<->node interface
(https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/
src/interfaces/chain.h#L.37)

Separate wallet into separate process (https://github.com/bitcoin/bitcoin/pull/10102)
Different backend storage?

Re-implementation?


https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.h#L206
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/wallet.h#L206
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L74
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.h#L74
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L206
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/wallet/walletdb.cpp#L206
https://github.com/bitcoin/bitcoin/pull/15764
https://github.com/bitcoin-core/HWI
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.h#L37
https://github.com/bitcoin/bitcoin/blob/431d81b61ca968da2d7c25f0d56455a44cd46fed/src/interfaces/chain.h#L37
https://github.com/bitcoin/bitcoin/pull/10102

