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CAVEAT AUDITOR!

▸ I am not a cryptologist! 

▸ This is only an overview - no formal proofs 

▸ I will use some terms loosely eg: 

▸ zero knowledge instead of honest verifier zero 
knowledge 

▸ proof instead of argument
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ELECTRONIC COINS



SENDING A COIN (SIMPLIFIED)

▸ A transaction consists of: 

▸ one or more transaction inputs (txins), which contain: 

▸ a reference to the transaction output (txout) that is being spent 

▸ a digital signature proving that the owner of the private key 
authorised the transaction 

▸ one or more transactions outputs (txouts), which contain: 

▸ the amount 

▸ the public key of the recipient of the txout



VERIFYING A TRANSACTION (SIMPLIFIED)

▸ All Bitcoin nodes verify all transactions: 

▸ Check that each txin points to an unspent txout 

▸ Check that the total amount in the txouts does not 
exceed the total amount from the txins 

▸ Check that each txin contains a valid signature for the 
public key from the txout referenced



DIGITAL SIGNATURES

▸ Digital signatures are used to transfer ownership of coins 

▸ A digital signature proves that the owner of the coin 
authorised the transfer: 

▸ only someone with the private key can sign the 
transaction (authentication) 

▸ no-one can change the transaction after it has been 
signed (integrity)



WHAT IS A DIGITAL SIGNATURE?

▸ Digital signatures make use of asymmetric cryptography 

▸ The user has a public key (which is known to everyone) 
and a corresponding private key (which is kept secret) 

▸ Only someone with the private key can create a valid 
signature over a message 

▸ Anyone with the public key and message can verify that 
the signature is valid



DIGITAL SIGNATURES AND BITCOIN

▸ Bitcoin uses Eliptic Curve Digital Signature Algorithm 
(ECDSA) over the secp256k1 curve 

▸ A better digital signature algorithm is the Schnorr 
signature algorithm 

▸ In the future, the Bitcoin protocol may be extended to 
allow Schnorr signatures



THE DISCRETE LOG PROBLEM

▸ ECDSA is an application of the discrete log problem  

▸ In some systems it is easy to ‘multiply’ but difficult to ‘divide’ 

▸ Discrete logs are defined for cyclic groups with a generator 
G. The problem is: 

▸ for a given H in the group, what is the scalar x such that  
xG = H 

▸ Bitcoin uses the group of points on the elliptic curve 
secp256k1 defined over a finite field of integers



FINITE FIELDS



GROUP

▸ A group is a set of objects along with a binary operator + 

▸ The binary operator has the following properties: 

▸ closure:  

▸ identity:  

▸ inverse: 

▸ associativity: 

▸ Some groups (called commutative/Abelian groups) also have: 

▸ commutativity:

∀a, b ∈ G, a + b ∈ G

∃0 ∈ G ∣ 0 + a = a + 0 = a ∀a ∈ G

∀a ∈ G, ∃(−a) ∣ a + (−a) = (−a) + a = 0

∀a, b, c ∈ G, (a + b) + c = a + (b + c)

∀a, b ∈ G, a + b = b + a



CYCLIC GROUP

▸ A group is cyclic if there is a generator element:  
 
 
 

▸ The integers modulo p for any prime p is a cyclic group:

∃g ∣ ∀a ∈ G, ∃n ∣ a = g + g + g + . . . (n times)

Z/pZ = {0,1,2,...,p − 1}



FIELD

▸ A field is a commutative group with a second binary 
operator x 

▸ The second binary operator is also closed, has an identity, 
has inverses (except for zero) and is associative and 
commutative 

▸ The binary operations are also distributive: 

▸ We can add, subtract, multiply and divide over a field

∀a, b, c ∈ G, a × (b + c) = (a × b) + (a × c)



EXAMPLE FIELDS

▸ The real numbers, with addition and multiplication defined 
as normal (infinite) 

▸ The rational numbers, with addition and multiplication 
defined as normal (infinite) 

▸ The integers from 0 to (n -1), with addition and 
multiplication defined modulo n (finite)



THE FINITE FIELD
▸ We use the finite field 

▸ eg   

FP
FP = {0,1,2,...,p − 1}

F13 = {0,1,2,...,12}

4 + 5 = 9
8 + 9 = 17 = 4 (mod 13)

4 − 8 = − 4 = 9 (mod 13)

5 × 3 = 15 = 2 (mod 13)

5 ÷ 3 = 5 ×
1
3

= 5 × 9 = 45 = 6 (mod 13)

53 = 125 = 8 (mod 13)
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ELLIPTIC CURVES

▸ An elliptic curve is a curve of the form:  

▸ In Bitcoin, we use the sec256k1 curve: 

▸ (ie a=0 and b=7)

y2 = x3 + ax + b

y2 = x3 + 7



ELLIPTIC CURVES OVER A FINITE FIELD

▸ Instead of defining secp256k1 over the reals, we define it 
over a finite field of integers mod p 

▸ p is 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1
OVER REALS OVER FP



DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

▸ We can define a binary operation + for the elliptic curve 

▸ To add two points: 

▸ take the line meeting the two 
points 

▸ find where the line intersects the 
curve again 

▸ reflect through the x axis



DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

▸ To double a point: 

▸ take the tangent at that point 

▸ find where the tangent meets the 
curve again 

▸ reflect through the x axis



DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

▸ A point’s inverse is the reflection in the x axis 

▸ Adding a point to its inverse yields our group identity: 
the ‘point at infinity’ 

▸ Adding the point at infinity to any point P yields P



GENERATING A CYCLIC GROUP

▸ Take any point G on the curve 

▸ Repeatedly add it to itself until you reach G again 

▸ The set of points generated is a cyclic group 

▸ For secp256k1, we use the generator point:  
G = (55066263022277343669578718895168534326250603453777594175500187360389116729240,  
         32670510020758816978083085130507043184471273380659243275938904335757337482424) 

▸ This is the group we use for our discrete log problem



DISCRETE LOG PROBLEM FOR AN ELIPTIC CURVE

▸ The private key is a scalar x, which is a 256 bit number in 
the range [0, … , n-1] where n is the order of the group 

▸ The public key is a point P on the curve where P = xG 

▸ It’s easy to go from x to P 

▸ it’s computationally difficult to go from P to x
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SCHNORR IDENTIFICATION PROTOCOL

▸ A prover can prove to a verifier that she knows the private 
key x corresponding to a public key P without revealing x 

▸ The verifier learns nothing about x from the proof (except 
the fact that the prover knows x) 

▸ This is called a proof in zero knowledge



ZERO-KNOWLEDGE PROOF

▸ A zero-knowledge proof requires three properties: 

▸ Completeness - the proof convinces the verifier 

▸ Zero-knowledgness - the proof doesn’t leak 
information 

▸ Soundness - a proof can only be produced by a prover 
who knows the private key



SCHNORR IDENTIFICATION PROTOCOL - THE STEPS

▸ The identification protocol has 3 steps: 

▸ 1. commitment - the prover picks a nonce scalar k and 
commits to it by sending K = kG to the verifier 

▸ 2. challenge - the verifier sends a challenge scalar e 

▸ 3. response - the prover sends the response scalar 
s = k + ex 



SCHNORR IDENTIFICATION PROTOCOL - COMPLETENESS

▸ The verifier is convinced that the prover knows x if the 
identity holds: 
 

▸ The verifier can do this because he knows s, G, K, e and P

sG = kG + exG
= K + eP



SCHNORR IDENTIFICATION PROTOCOL - ZERO-KNOWLEDGENESS

▸ The transcript of the 3 step protocol is: (K, e, s) 

▸ If the verifier colludes with the prover and tells her what efake is 
before she provides a K, then she can choose sfake randomly 
and set Kfake = sfakeG - efakeP 

▸ The transcript (Kfake, efake, sfake) is indistinguisable from a real 
transcript 

▸ If we can simulate a fake proof transcript without knowledge of 
x, then it follows that a real proof transcript leaks no 
knowledge of x



SCHNORR IDENTIFICATION PROTOCOL - SOUNDNESS (1)

▸ If the prover can produce a proof reliably for any challenge e, 
she must know x 

▸ Imagine being able to pause, fast-forward or rewind the 
prover’s operation. The verifier could ‘fork’ the prover: 

1. wait for the prover’s commitment K 

2. send challenge e1 and receive response s1 

3. rewind to the challenge step 

4. send challenge e2 and receive response s2



SCHNORR IDENTIFICATION PROTOCOL - SOUNDNESS (2)

▸ The verifier now has:                           

▸ The verifier can calculate  

▸ The verifier has extracted the private key x from the prover 

▸ The prover therefore must have had the private key! 

▸ If this doesn’t convince you, imagine the prover ‘forking’ 
himself

x =
s1 − s2

e1 − e2

s1 = k + e1x s2 = k + e2xand



NON-INTERACTIVE SCHNORR IDENTIFICATION PROTOCOL

▸ That the verifier’s only role was to provide a ‘random’ challenge 

▸ If we can replace the verifier with a random oracle that simply 
provides a random number after the commitment step, then we 
don’t need a verifier 

▸ We treat a hash function as a random oracle 

▸ After has a special meaning - the prover can’t know the output 
to a hash function before evaluating it 

▸ This is called a Fiat-Shamir transform



▸ The identification protocol has 3 steps: 

1. The prover picks a nonce scalar k 

2. The prover calculates e = H(kG) 

3. The prover computes the scalar s = k + ex 

‣ The proof is (s,e) 

‣ Anyone can verify the proof by calculating kG = sG - exG 
and verifying e = H(kG)

NON-INTERACTIVE SCHNORR IDENTIFICATION PROTOCOL



▸ Since H is a random oracle and returns different values for 
different inputs, the prover can add extra inputs to H 

▸ The result is a signature of knowledge over a message 

▸ eg the prover can set e = H(m || kG) 

▸ The prover calculates s in the normal way: s = k + ex 

▸ The verifier then calculates kG = sG - exG 
and verifying that e = H(m || kG)

SIGNATURE OF KNOWLEDGE OVER A MESSAGE



ECDSA



ECDSA

▸ ECDSA is a different digital signature algorithm 

▸ It also uses the DLP over elliptic curves 

▸ ECDSA was developed (and later used in Bitcoin) because Schnorr 
signatures were encumbered by a patent 

▸ There are several disadvantages compared to Schnorr: 

▸ Signatures are not linear (makes threshold and adaptor signatures 
much more difficult) 

▸ There is no security proof for ECDSA 

▸ ECDSA signatures are malleable



ECDSA SIGNING

▸ The prover signs a message m as follows: 

1. set z as the leftmost bits of H(m) 

2. pick a random nonce scalar k 

3. set K = kG and r as the x coordinate of K 

4. set s = k-1(z + rx) 

‣ The signature is the pair (r, s)



ECDSA VERIFYING

▸ The signature can be verified as follows:

1.   set z as the leftmost bits of H(m)

u =
z
s

v =
r
s

2.   set              and 

3.   if the x co-ordinate of uG + vP is equal to r, then the 
      signature is valid
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FURTHER READING

▸ Borromean Ring Signatures, Greg Maxwell and Andrew Poelstra: 
https://github.com/Blockstream/borromean_paper 

▸ Confidential Transactions and Bulletproofs, Adam Gibson: https://
joinmarket.me/blog/blog/from-zero-knowledge-proofs-to-
bulletproofs-paper/ 

▸ Zero-knowledge proofs, Matthew Green: https://
blog.cryptographyengineering.com/2014/11/27/zero-knowledge-
proofs-illustrated-primer/ 

▸ Schnorr Signatures, Pieter Wuille: https://www.youtube.com/
watch?v=YSUVRj8iznU
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