
DIGITAL SIGNATURES
JOHN NEWBERY

@jfnewbery

github.com/jnewbery

ABOUT ME

Live in New York

Work for Chaincode Labs

Contribute to Bitcoin Core

github.com/jnewbery

DIGITAL SIGNATURES

▸ Electronic coins & digital signatures

▸ Finite Fields

▸ Elliptic Curves

▸ Schnorr Signatures

▸ ECDSA

▸ Further Reading

CAVEAT AUDITOR!

▸ I am not a cryptologist!

▸ This is only an overview - no formal proofs

▸ I will use some terms loosely eg:

▸ zero knowledge instead of honest verifier zero
knowledge

▸ proof instead of argument

ELECTRONIC
COINS

ELECTRONIC COINS

SENDING A COIN (SIMPLIFIED)

▸ A transaction consists of:

▸ one or more transaction inputs (txins), which contain:

▸ a reference to the transaction output (txout) that is being spent

▸ a digital signature proving that the owner of the private key
authorised the transaction

▸ one or more transactions outputs (txouts), which contain:

▸ the amount

▸ the public key of the recipient of the txout

VERIFYING A TRANSACTION (SIMPLIFIED)

▸ All Bitcoin nodes verify all transactions:

▸ Check that each txin points to an unspent txout

▸ Check that the total amount in the txouts does not
exceed the total amount from the txins

▸ Check that each txin contains a valid signature for the
public key from the txout referenced

DIGITAL SIGNATURES

▸ Digital signatures are used to transfer ownership of coins

▸ A digital signature proves that the owner of the coin
authorised the transfer:

▸ only someone with the private key can sign the
transaction (authentication)

▸ no-one can change the transaction after it has been
signed (integrity)

WHAT IS A DIGITAL SIGNATURE?

▸ Digital signatures make use of asymmetric cryptography

▸ The user has a public key (which is known to everyone)
and a corresponding private key (which is kept secret)

▸ Only someone with the private key can create a valid
signature over a message

▸ Anyone with the public key and message can verify that
the signature is valid

DIGITAL SIGNATURES AND BITCOIN

▸ Bitcoin uses Eliptic Curve Digital Signature Algorithm
(ECDSA) over the secp256k1 curve

▸ A better digital signature algorithm is the Schnorr
signature algorithm

▸ In the future, the Bitcoin protocol may be extended to
allow Schnorr signatures

THE DISCRETE LOG PROBLEM

▸ ECDSA is an application of the discrete log problem

▸ In some systems it is easy to ‘multiply’ but difficult to ‘divide’

▸ Discrete logs are defined for cyclic groups with a generator
G. The problem is:

▸ for a given H in the group, what is the scalar x such that  
xG = H

▸ Bitcoin uses the group of points on the elliptic curve
secp256k1 defined over a finite field of integers

FINITE FIELDS

GROUP

▸ A group is a set of objects along with a binary operator +

▸ The binary operator has the following properties:

▸ closure:

▸ identity:

▸ inverse:

▸ associativity:

▸ Some groups (called commutative/Abelian groups) also have:

▸ commutativity:

∀a, b ∈ G, a + b ∈ G

∃0 ∈ G ∣ 0 + a = a + 0 = a ∀a ∈ G

∀a ∈ G, ∃(−a) ∣ a + (−a) = (−a) + a = 0

∀a, b, c ∈ G, (a + b) + c = a + (b + c)

∀a, b ∈ G, a + b = b + a

CYCLIC GROUP

▸ A group is cyclic if there is a generator element:  
 
 
 

▸ The integers modulo p for any prime p is a cyclic group:

∃g ∣ ∀a ∈ G, ∃n ∣ a = g + g + g + . . . (n times)

Z/pZ = {0,1,2,...,p − 1}

FIELD

▸ A field is a commutative group with a second binary
operator x

▸ The second binary operator is also closed, has an identity,
has inverses (except for zero) and is associative and
commutative

▸ The binary operations are also distributive: 

▸ We can add, subtract, multiply and divide over a field

∀a, b, c ∈ G, a × (b + c) = (a × b) + (a × c)

EXAMPLE FIELDS

▸ The real numbers, with addition and multiplication defined
as normal (infinite)

▸ The rational numbers, with addition and multiplication
defined as normal (infinite)

▸ The integers from 0 to (n -1), with addition and
multiplication defined modulo n (finite)

THE FINITE FIELD
▸ We use the finite field

▸ eg

FP
FP = {0,1,2,...,p − 1}

F13 = {0,1,2,...,12}

4 + 5 = 9
8 + 9 = 17 = 4 (mod 13)

4 − 8 = − 4 = 9 (mod 13)

5 × 3 = 15 = 2 (mod 13)

5 ÷ 3 = 5 ×
1
3

= 5 × 9 = 45 = 6 (mod 13)

53 = 125 = 8 (mod 13)

ELLIPTIC
CURVES

ELLIPTIC CURVES

▸ An elliptic curve is a curve of the form:

▸ In Bitcoin, we use the sec256k1 curve:

▸ (ie a=0 and b=7)

y2 = x3 + ax + b

y2 = x3 + 7

ELLIPTIC CURVES OVER A FINITE FIELD

▸ Instead of defining secp256k1 over the reals, we define it
over a finite field of integers mod p

▸ p is 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1
OVER REALS OVER FP

DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

▸ We can define a binary operation + for the elliptic curve

▸ To add two points:

▸ take the line meeting the two 
points

▸ find where the line intersects the 
curve again

▸ reflect through the x axis

DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

▸ To double a point:

▸ take the tangent at that point

▸ find where the tangent meets the 
curve again

▸ reflect through the x axis

DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

▸ A point’s inverse is the reflection in the x axis

▸ Adding a point to its inverse yields our group identity:
the ‘point at infinity’

▸ Adding the point at infinity to any point P yields P

GENERATING A CYCLIC GROUP

▸ Take any point G on the curve

▸ Repeatedly add it to itself until you reach G again

▸ The set of points generated is a cyclic group

▸ For secp256k1, we use the generator point:  
G = (55066263022277343669578718895168534326250603453777594175500187360389116729240,  
 32670510020758816978083085130507043184471273380659243275938904335757337482424)

▸ This is the group we use for our discrete log problem

DISCRETE LOG PROBLEM FOR AN ELIPTIC CURVE

▸ The private key is a scalar x, which is a 256 bit number in
the range [0, … , n-1] where n is the order of the group

▸ The public key is a point P on the curve where P = xG

▸ It’s easy to go from x to P

▸ it’s computationally difficult to go from P to x

SCHNORR
SIGNATURES

SCHNORR IDENTIFICATION PROTOCOL

▸ A prover can prove to a verifier that she knows the private
key x corresponding to a public key P without revealing x

▸ The verifier learns nothing about x from the proof (except
the fact that the prover knows x)

▸ This is called a proof in zero knowledge

ZERO-KNOWLEDGE PROOF

▸ A zero-knowledge proof requires three properties:

▸ Completeness - the proof convinces the verifier

▸ Zero-knowledgness - the proof doesn’t leak
information

▸ Soundness - a proof can only be produced by a prover
who knows the private key

SCHNORR IDENTIFICATION PROTOCOL - THE STEPS

▸ The identification protocol has 3 steps:

▸ 1. commitment - the prover picks a nonce scalar k and
commits to it by sending K = kG to the verifier

▸ 2. challenge - the verifier sends a challenge scalar e

▸ 3. response - the prover sends the response scalar 
s = k + ex 

SCHNORR IDENTIFICATION PROTOCOL - COMPLETENESS

▸ The verifier is convinced that the prover knows x if the
identity holds: 
 

▸ The verifier can do this because he knows s, G, K, e and P

sG = kG + exG
= K + eP

SCHNORR IDENTIFICATION PROTOCOL - ZERO-KNOWLEDGENESS

▸ The transcript of the 3 step protocol is: (K, e, s)

▸ If the verifier colludes with the prover and tells her what efake is
before she provides a K, then she can choose sfake randomly
and set Kfake = sfakeG - efakeP

▸ The transcript (Kfake, efake, sfake) is indistinguisable from a real
transcript

▸ If we can simulate a fake proof transcript without knowledge of
x, then it follows that a real proof transcript leaks no
knowledge of x

SCHNORR IDENTIFICATION PROTOCOL - SOUNDNESS (1)

▸ If the prover can produce a proof reliably for any challenge e,
she must know x

▸ Imagine being able to pause, fast-forward or rewind the
prover’s operation. The verifier could ‘fork’ the prover:

1. wait for the prover’s commitment K

2. send challenge e1 and receive response s1

3. rewind to the challenge step

4. send challenge e2 and receive response s2

SCHNORR IDENTIFICATION PROTOCOL - SOUNDNESS (2)

▸ The verifier now has:

▸ The verifier can calculate  

▸ The verifier has extracted the private key x from the prover

▸ The prover therefore must have had the private key!

▸ If this doesn’t convince you, imagine the prover ‘forking’
himself

x =
s1 − s2

e1 − e2

s1 = k + e1x s2 = k + e2xand

NON-INTERACTIVE SCHNORR IDENTIFICATION PROTOCOL

▸ That the verifier’s only role was to provide a ‘random’ challenge

▸ If we can replace the verifier with a random oracle that simply
provides a random number after the commitment step, then we
don’t need a verifier

▸ We treat a hash function as a random oracle

▸ After has a special meaning - the prover can’t know the output
to a hash function before evaluating it

▸ This is called a Fiat-Shamir transform

▸ The identification protocol has 3 steps:

1. The prover picks a nonce scalar k

2. The prover calculates e = H(kG)

3. The prover computes the scalar s = k + ex

‣ The proof is (s,e)

‣ Anyone can verify the proof by calculating kG = sG - exG
and verifying e = H(kG)

NON-INTERACTIVE SCHNORR IDENTIFICATION PROTOCOL

▸ Since H is a random oracle and returns different values for
different inputs, the prover can add extra inputs to H

▸ The result is a signature of knowledge over a message

▸ eg the prover can set e = H(m || kG)

▸ The prover calculates s in the normal way: s = k + ex

▸ The verifier then calculates kG = sG - exG 
and verifying that e = H(m || kG)

SIGNATURE OF KNOWLEDGE OVER A MESSAGE

ECDSA

ECDSA

▸ ECDSA is a different digital signature algorithm

▸ It also uses the DLP over elliptic curves

▸ ECDSA was developed (and later used in Bitcoin) because Schnorr
signatures were encumbered by a patent

▸ There are several disadvantages compared to Schnorr:

▸ Signatures are not linear (makes threshold and adaptor signatures
much more difficult)

▸ There is no security proof for ECDSA

▸ ECDSA signatures are malleable

ECDSA SIGNING

▸ The prover signs a message m as follows:

1. set z as the leftmost bits of H(m)

2. pick a random nonce scalar k

3. set K = kG and r as the x coordinate of K

4. set s = k-1(z + rx)

‣ The signature is the pair (r, s)

ECDSA VERIFYING

▸ The signature can be verified as follows:

1. set z as the leftmost bits of H(m)

u =
z
s

v =
r
s

2. set and

3. if the x co-ordinate of uG + vP is equal to r, then the 
 signature is valid

FURTHER
READING

FURTHER READING

▸ Borromean Ring Signatures, Greg Maxwell and Andrew Poelstra: 
https://github.com/Blockstream/borromean_paper

▸ Confidential Transactions and Bulletproofs, Adam Gibson: https://
joinmarket.me/blog/blog/from-zero-knowledge-proofs-to-
bulletproofs-paper/

▸ Zero-knowledge proofs, Matthew Green: https://
blog.cryptographyengineering.com/2014/11/27/zero-knowledge-
proofs-illustrated-primer/

▸ Schnorr Signatures, Pieter Wuille: https://www.youtube.com/
watch?v=YSUVRj8iznU

https://github.com/Blockstream/borromean_paper
https://joinmarket.me/blog/blog/from-zero-knowledge-proofs-to-bulletproofs-paper/
https://joinmarket.me/blog/blog/from-zero-knowledge-proofs-to-bulletproofs-paper/
https://joinmarket.me/blog/blog/from-zero-knowledge-proofs-to-bulletproofs-paper/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://www.youtube.com/watch?v=YSUVRj8iznU
https://www.youtube.com/watch?v=YSUVRj8iznU

