ABOUT ME

Live in New York

Work for Chaincode Labs

Contribute to Bitcoin Core
github.com/jnewbery

DIGITAL SIGNATURES

, Electronic coins \& digital signatures
. Finite Fields

- Elliptic Curves
, Schnorr Signatures
, ECDSA
- Further Reading

CAVEAT AUDITOR!

D I am not a cryptologist!

- This is only an overview - no formal proofs
> I will use some terms loosely eg:
> zero knowledge instead of honest verifier zero knowledge
proof instead of argument

ELECTRONIC COINS

ELECTRONIC COINS

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the next by digitally signing a hash of the previous transaction and the public key of the next owner and adding these to the end of the coin. A payee can verify the signatures to verify the chain of ownership.

SENDING A COIN (SIMPLIFIED)

- A transaction consists of:

D one or more transaction inputs (txins), which contain:

- a reference to the transaction output (txout) that is being spent
- a digital signature proving that the owner of the private key authorised the transaction
> one or more transactions outputs (txouts), which contain:
> the amount
> the public key of the recipient of the txout

VERIFYING A TRANSACTION (SIMPLIFIED)

- All Bitcoin nodes verify all transactions:
. Check that each txin points to an unspent txout
, Check that the total amount in the txouts does not exceed the total amount from the txins
- Check that each txin contains a valid signature for the public key from the txout referenced

DIGITAL SIGNATURES

Digital signatures are used to transfer ownership of coins

- A digital signature proves that the owner of the coin authorised the transfer:
> only someone with the private key can sign the transaction (authentication)
(no-one can change the transaction after it has been signed (integrity)

WHAT IS A DIGITAL SIGNATURE?

- Digital signatures make use of asymmetric cryptography
, The user has a public key (which is known to everyone) and a corresponding private key (which is kept secret)
- Only someone with the private key can create a valid signature over a message
- Anyone with the public key and message can verify that the signature is valid

DIITIAL SIGNATURES AND BITCOIN

, Bitcoin uses Eliptic Curve Digital Signature Algorithm (ECDSA) over the secp256k1 curve

- A better digital signature algorithm is the Schnorr signature algorithm
- In the future, the Bitcoin protocol may be extended to allow Schnorr signatures

THE DISCREIE LOG PROBLEM

- ECDSA is an application of the discrete log problem

D In some systems it is easy to 'multiply' but difficult to 'divide'
Discrete logs are defined for cyclic groups with a generator G. The problem is:

- for a given H in the group, what is the scalar x such that $x G=H$
- Bitcoin uses the group of points on the elliptic curve secp256k1 defined over a finite field of integers

+	$\mathbf{0}$	$\mathbf{1}$	\mathbf{a}	\mathbf{b}
$\mathbf{0}$	0	1	a	b
$\mathbf{1}$	1	0	b	a
\mathbf{a}	a	b	0	1
\mathbf{b}	b	a	1	0

	$\mathbf{0}$	$\mathbf{1}$	\mathbf{a}
\mathbf{b}			
$\mathbf{0}$	0	0	0
$\mathbf{1}$	0		
\mathbf{a}	1	a	b
\mathbf{a}	0	a	b
\mathbf{b}	0	b	1

GROUP

- A group is a set of objects along with a binary operator +
- The binary operator has the following properties:
. closure: $\forall a, b \in G, a+b \in G$
- identity: $\exists 0 \in G \mid 0+a=a+0=a \forall a \in G$
- inverse: $\forall a \in G, \exists(-a) \mid a+(-a)=(-a)+a=0$
\ associativity: $\forall a, b, c \in G,(a+b)+c=a+(b+c)$
- Some groups (called commutative/Abelian groups) also have:
- commutativity: $\forall a, b \in G, a+b=b+a$

CYCLIC GROUP

(A group is cyclic if there is a generator element:

$$
\exists g|\forall a \in G, \exists n| a=g+g+g+\ldots(n \text { times })
$$

- The integers modulo p for any prime p is a cyclic group:

$$
Z / p Z=\{0,1,2, \ldots, p-1\}
$$

FIELD

- A field is a commutative group with a second binary operator x
- The second binary operator is also closed, has an identity, has inverses (except for zero) and is associative and commutative
- The binary operations are also distributive:

$$
\forall a, b, c \in G, a \times(b+c)=(a \times b)+(a \times c)
$$

- We can add, subtract, multiply and divide over a field

EXAMPLE FIELDS

- The real numbers, with addition and multiplication defined as normal (infinite)
- The rational numbers, with addition and multiplication defined as normal (infinite)
- The integers from 0 to ($\mathrm{n}-1$), with addition and multiplication defined modulo n (finite)

THE FINITE FIELD F_{P}

- We use the finite field $F_{P}=\{0,1,2, \ldots, p-1\}$
veg $F_{13}=\{0,1,2, \ldots, 12\}$

$$
\begin{aligned}
& 4+5=9 \\
& 8+9=17=4(\bmod 13) \\
& 4-8=-4=9(\bmod 13) \\
& 5 \times 3=15=2(\bmod 13) \\
& 5 \div 3=5 \times \frac{1}{3}=5 \times 9=45=6(\bmod 13) \\
& 5^{3}=125=8(\bmod 13)
\end{aligned}
$$

$$
\begin{aligned}
& x^{3}-3 x+5 \\
& =Q \\
& \text { ELLIPTIC } \\
& \text { CURVES }
\end{aligned}
$$

ELLIPTIC CURVES

(An elliptic curve is a curve of the form: $y^{2}=x^{3}+a x+b$
In Bitcoin, we use the sec256k1 curve: $y^{2}=x^{3}+7$
(ie $\mathrm{a}=0$ and $\mathrm{b}=7$)

ELLIPTIC CURVES OVER A FINTIE FIELD

> Instead of defining secp256k1 over the reals, we define it over a finite field of integers mod p

- p is $2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1$

OVER REALS

OVER Fp

DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

, We can define a binary operation + for the elliptic curve
> To add two points:
, take the line meeting the two points

- find where the line intersects the curve again
- reflect through the x axis

DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

, To double a point:
> take the tangent at that point

- find where the tangent meets the curve again
> reflect through the x axis

DEFINING A GROUP OPERATION FOR THE ELLIPTIC CURVE

- A point's inverse is the reflection in the x axis
- Adding a point to its inverse yields our group identity: the 'point at infinity'
- Adding the point at infinity to any point P yields P

GENERATING A CYCLIC GROUP

, Take any point G on the curve

- Repeatedly add it to itself until you reach G again
- The set of points generated is a cyclic group
- For secp256k1, we use the generator point: $\mathrm{G}=(55066263022277343669578718895168534326250603453777594175500187360389116729240$, $32670510020758816978083085130507043184471273380659243275938904335757337482424)$
, This is the group we use for our discrete log problem

DISCRETE LOG PROBLEM FOR AN ELIPTIC CURVE

> The private key is a scalar x, which is a 256 bit number in the range $[0, \ldots, n-1]$ where n is the order of the group
, The public key is a point P on the curve where $P=x G$

- It's easy to go from x to P
- it's computationally difficult to go from P to x

SCHNORR IDENTIFICATION PROTOCOL

- A prover can prove to a verifier that she knows the private key x corresponding to a public key P without revealing x
> The verifier learns nothing about x from the proof (except the fact that the prover knows x)
- This is called a proof in zero knowledge

ZERO-KNOWLEDGE PROOF

- A zero-knowledge proof requires three properties:
, Completeness - the proof convinces the verifier
D Zero-knowledgness - the proof doesn't leak information
- Soundness - a proof can only be produced by a prover who knows the private key

SCHNORR IDENTIFICATION PROTOCOL - THE STEPS

D The identification protocol has 3 steps:

- 1. commitment - the prover picks a nonce scalar k and commits to it by sending $K=k G$ to the verifier
- 2. challenge - the verifier sends a challenge scalar e
- 3. response - the prover sends the response scalar $s=k+e x$

SCHNORR IDENTIFCCATION PROTOCOL - COMPLEEENESS

D The verifier is convinced that the prover knows x if the identity holds:

$$
\begin{aligned}
s G & =k G+e x G \\
& =K+e P
\end{aligned}
$$

, The verifier can do this because he knows s, G, K, e and P

SCHNORR IDENTIFICATION PROTOCOL - ZERO-KNOWLEDGENESS

- The transcript of the 3 step protocol is: (K, e, s)
- If the verifier colludes with the prover and tells her what $e_{\text {fake }}$ is before she provides a K, then she can choose sfake randomly and set $K_{\text {fake }}=s_{\text {fake }} G-e_{\text {fake }} P$

D The transcript ($K_{\text {faker }} \mathrm{e}_{\text {faker }} S_{\text {fake }}$) is indistinguisable from a real transcript

- If we can simulate a fake proof transcript without knowledge of x, then it follows that a real proof transcript leaks no knowledge of x

SCHNORR IDENTIFICATION PROTOCOL - SOUNDNESS (1)

- If the prover can produce a proof reliably for any challenge e, she must know x
- Imagine being able to pause, fast-forward or rewind the prover's operation. The verifier could 'fork' the prover:

1. wait for the prover's commitment K
2. send challenge e_{1} and receive response s_{1}
3. rewind to the challenge step
4. send challenge e_{2} and receive response s_{2}

SCHNORR IDENTIFICATION PROTOCOL - SOUNDNESS (2)

- The verifier now has: $s_{1}=k+e_{1} x$ and $s_{2}=k+e_{2} x$
- The verifier can calculate $x=\frac{s_{1}-s_{2}}{e_{1}-e_{2}}$
- The verifier has extracted the private key x from the prover
- The prover therefore must have had the private key!
- If this doesn't convince you, imagine the prover 'forking' himself

NON-INTERACTIVE SCHNORR IDENTIFICATION PROTOCOL

- That the verifier's only role was to provide a 'random' challenge
- If we can replace the verifier with a random oracle that simply provides a random number after the commitment step, then we don't need a verifier
- We treat a hash function as a random oracle
- After has a special meaning - the prover can't know the output to a hash function before evaluating it
- This is called a Fiat-Shamir transform

NON-INTERACTIVE SCHNORR IDENTIFICATION PROTOCOL

- The identification protocol has 3 steps:

1. The prover picks a nonce scalar k
2. The prover calculates $e=H(k G)$
3. The prover computes the scalar $s=k+e x$

- The proof is (s, e)
- Anyone can verify the proof by calculating $k G=s G-e x G$ and verifying $e=H(k G)$

SIGNATURE OF KNOWLEDGE OVER A MESSAGE

- Since H is a random oracle and returns different values for different inputs, the prover can add extra inputs to H
- The result is a signature of knowledge over a message
v eg the prover can set $e=H(m \| k G)$
- The prover calculates s in the normal way: $s=k+e x$
- The verifier then calculates $k G=s G-e x G$ and verifying that $e=H(m \| k G)$

ECDSA

, ECDSA is a different digital signature algorithm

- It also uses the DLP over elliptic curves
- ECDSA was developed (and later used in Bitcoin) because Schnorr signatures were encumbered by a patent
, There are several disadvantages compared to Schnorr:
- Signatures are not linear (makes threshold and adaptor signatures much more difficult)
- There is no security proof for ECDSA
- ECDSA signatures are malleable

ECDSA SIGNING

, The prover signs a message m as follows:

1. set z as the leftmost bits of $H(m)$
2. pick a random nonce scalar k
3. set $K=k G$ and r as the x coordinate of K
4. set $s=k^{-1}(z+r x)$
> The signature is the pair (r, s)

ECDSA VERIFYING

, The signature can be verified as follows:

1. set z as the leftmost bits of $H(m)$
2. set $u=\frac{z}{s}$ and $v=\frac{r}{s}$
3. If the x co-ordinate of $u G+v P$ is equal to r, then the signature is valid

FURTHER READING

FURTHER READING

, Borromean Ring Signatures, Greg Maxwell and Andrew Poelstra: https://github.com/Blockstream/borromean paper
, Confidential Transactions and Bulletproofs, Adam Gibson: https:// joinmarket.me/blog/blog/from-zero-knowledge-proofs-to-bulletproofs-paper/
, Zero-knowledge proofs, Matthew Green: https:// blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
, Schnorr Signatures, Pieter Wuille: https://www.youtube.com/ watch?v=YSUVRj8iznU

