THE PEER-T0-PEER NETWORK

JOHN NEWBERY

@jfnewbery
githubicom/jnewbery

THE PEER-TO-PEER NETWORK

» Introduction

» Types of nodes

» Message format

» Control messages

» Transaction propagation

» Block propagation

THE PEER T0
PEER NETWORK

WHAT IS THE PEER-TO-PEER NETWORK?

» How transactions and blocks are propagated to Bitcoin
nodes

» Open, flat peer-to-peer network - no authentication, no
special nodes

» Must be resistant to attacks:
» Denial-Of-Service attacks

» Sybil attacks

NETWORK COMMANDS

» VERSION
» VERACK
» ADDR

» GETADDR
» INV

» GETDATA

» GETBLOCKS

» GETHEADERS
» TX

» BLOCK

» HEADERS

» PING

» PONG

CONNECTING TO THE PEER-TO-PEER NETWORK

» Nodes initially connect to one or more seed nodes

» Addresses of other nodes on the network are gossiped
using ADDR messages

» A Bitcoin Core node will connect to up to eight outbound
peers

» Nodes may or may not accept inbound peers

DISCONNECTING AND BANNING (1)

» Nodes which misbehave need to be removed:
» They waste system resources

» They take up slots that could be used for honest peers

DISCONNECTING AND BANNING (2)

» ‘bad behavior’ may include:
» Invalid transactions or blocks
» Unconnected blocks
» Stalling
» Non-standard transactions

» Malformed messages

DISCONNECTING AND BANNING (3)

» Depending on the misbehavior, Bitcoin Core may:
» Ignore the problem and continue
» Disconnect the peer immediately

» Ban the peer (disconnect and don't allow connections
from the same IP address for 24 hours)

» Apply DoS points. When the DoS score reaches 100,
ban the peer

FULL NODE

» Also called a fully validating node

» Receives blocks as they are mined and propagated around the
network

» Verifies the validity of all blocks and all transactions included in
those blocks

» Enforces the consensus rules of the Bitcoin network
» Maintains a collection of all the unspent outputs

» The most secure and private way to use Bitcoin

PRUNED NODE

» Atype of full node
» Discards old block data to save disk space

» Retains at least 2 days of blocks and undo data to allow for
re-orgs

» Propagates new blocks but cannot serve old blocks

» As secure as a non-pruned full node

'ARCHIVAL NODE

» Unlike a pruned node, retains all old block and undo data

» Can serve old blocks to peers on the network

» Signaled using NODE_NETWORK in the version
handshake

SIMPLE PAYMENT VERIFICATION (SPV) NODE (1)

» Only downloads:
» the block headers
» information about specific transactions
» Can validate proof-of-work
» Can't validate other network rules:
» Can't detect invalid or double-spend transactions

» Can't verify money supply

SIMPLE PAYMENT VERIFICATION (SPV) NODE (2)

» Can verify that a transaction is included in a block (by
asking for Merkle proofs)

» Can't verify that a transaction hasn’t appeared in the
blockchain

» Can use Bloom filters to preserve (some) privacy

OTHER NODE OPTIONS

» -blocksonly - full node which doesn’t propagate
transactions

» -nolisten - node which makes outbound connections but
doesn’t accept inbound connections

» -onion - connect to peers using Tor
» -proxy - connect to peers via a proxy

» -whitelist=<IP address or subnet> -

MESSAGE
FORMAT

MESSAGE FORMAT

» Bitcoin P2P messages contain a header and a payload
» Header is 24 bytes:
» Magic (4 bytes): indicates the network (0xf2beb4d? for Bitcoin
» Command name (12 bytes): eg ADDR, INV, BLOCK, etc
» Payload size (4 bytes): how large the payload is in bytes
» Checksum (4 bytes): Double SHA256 of payload

» Payload: up to 32MB. Each command has its own defined format

MESSAGE FORMAT

Payload
size
(4 bytes)

Checksum
(4 bytes)

Command Name

(12 bytes)

EXAMPLE HEADER

Bf9beb4d976657261636b000000000000000000005df6e0e2

» AL LLL : network magic for Bitcoin main net

W76657261636b000000000000BA1=17® Qi WL-TTeNe T ool sTe

» (bl olels) - payload size is zero

p BY{ TN IVd : checksum SHA256(SHA256(""))

a2 W.l.'lu‘v: . -.....-.. —r . , 2 , | 3 bol B85S
e L ey O POV
..«....c 3 = " 3 . = | Nv

VERSION HANDSHAKE

» P2P connection starts with a version handshake

» Used by nodes to exchange information about themselves

» A node responds to a VERSION message with VERACK

VERSION MESSAGE (1)

» Version (4 bytes)

» highest version the transmitting node can connect to
» Services (8 bytes)

» bitfield of services supported by the transmitting node
» Timestamp (8 bytes)

» Unix timestamp of transmitting node

VERSION MESSAGE (2)

» addr_recv services (8 bytes)
» services supported by the receiving node
» addr_recv IP address and port (16 + 2 bytes)
» IPvé6 address and port of receiving node
» addr_trans services (8 bytes)

» services supported by the transmitting node (should be same as Services

field)
» addr_trans IP address and port (16 + 2 bytes)

» IPvé address and port of transmitting node

VERSION MESSAGE (3)

» nonce (8 bytes)
» random number used to detect if a node is connecting to itself
» user_agent (compactSize + len)
» string indicating the software the node is using
» start_height (4 bytes)
» height of the transmitting node’s best blockchain
» relay (bool - optional)

» indicates whether INV or TX messages should be sent to the transmitting
node

OTHER CONTROL MESSAGES

» VERACK - sent in response to a VERSION message

» ADDR - gossips connection information about other nodes
» GETADDR - requests information about other nodes

» PING/PONG - confirms connectivity

» FILTERLOAD / FILTERADD / FILTERCLEAR - sets and unsets
bloom filters for SPV transaction propagation

oe Macoh '?‘ ?0[5

§H4e422 730,00

AR s

#

0453BELe

]

CASHIER'S CHECK
CATE September 27,7014

AMOUNT § SAARSAT RAR.NN

VOO ATTER 80 Daovs

L 237E33 40

T e

s

)

VEMBHAL ELESTRIC GREDIT LW

hile
WA OUS (NE IR AN ANTITRILAL WATER M AN -

TAYZ QN
s

Rl R R AR el L i

Amarillo
National
Bank

T e Ty Pty
. Y LR WA o
Iy e T el

A ONE THODSARD SIX XUNDRED EIGHT® AN
Pt KOBERT WALKP T

FALINA ZAKOWIC2

FOCILOGE® 241430034

THIE BOCUNFAT SA S 5 COUDE AL § A AN L UNE AND M) 80

MALDISON

MAIIEON ET CIF, INC.
8745 \V WD 51

LOS ANGHELES, T/ 003

v =
z%;;g;‘ ~ Halina Zakmvieg

THWU-THOUSAND musmr\mm- THIRIY AND
Halina Zakawicz

MEMD PAYMEN]
POLROS 7« L L223C00BER

el LT -

5 Adamsis
17 Adumsas

= CREDIT UNION NATE: (&2

Snpe vehng Bari Mt or 8 s L CHECK NO -

10 Dox &
Jebharville A% TMTEAN9

THREE ZRCUSAND SEVEN RUNKDRED SEVENTY

Halneg Zab.owkd

PSASLLA 2R 2D TEU JHND

TH VIR ATV R S AR e |

P4 Akansas Federal :
EZCREDIT UNION e

b vvin) Sare Sy Ly

PO ey
Akt AR TINTEO000

CHECK NO

pertye THREE THDUSAND SFVEN WUNDRED SEVENTY
L i)

Lol
. Mauma Jakrare
cr

TRANSACTION
PROPAGATION

INVENTORY ANNOUNCEMENT

» New transactions are announced in an INV message
» INV messages contain the txid
» (Can also contain block hashes)

» If the receiving node wants the announced inventory, it
responds with a GETDATA message

» The announcing node then sends a TX messages

Receiving Transmitting
Node Node

GETDATA
txid

PROPAGATION

BLOCK PROPAGATION

» Originally, blocks were propagated using INV-GETDATA-
BLOCK

» v0.10.0 introduced ‘headers first’ syncing
» v0.12.0 introduced the SENDHEADERS message
» v0.13.0 introduced compact blocks

» v0.14.0 introduced High Bandwidth compact blocks

HEADERS-FIRST SYNCING

» Transmitting node sends INV with block hash as normal
» Receiving node responds with:
» GETHEADERS (for block headers up to the tip)
» GETDATA (for the tip block)
» Transmitting node sends:
» HEADERS (connecting tip to the receiving node’s best block)

» BLOCK (containing the tip block)

Receiving Transmitting
Node Node

INV

_——" Ddlock hash

~

TGETHEADERS

lran or

GETDATA

ninek hash

HEADERS

-
-
-

BLOCK
raw block

SENDHEADERS

» SENDHEADERS is a new control message in protocol
version 70012

» Sentimmediately after VERSION handshake

» Indicates that the transmitting node would prefer to
receive HEADERs messages instead of INVs

» Saves a INV-GETHEADERS round trip

» Defined in BIP 130

Receiving Transmitting
Node Node

GETDATA

block hash

BLOCK
raw block

COMPACT BLOCKS (1)

» Reduces time and bandwidth for propagating blocks

» Relies on fact that peer has already seen most transactions
in a new block

» Enabled by node sending a SENDCMPCT message (similar
to SENDHEADERS)

» Defined in BIP 152

COMPACT BLOCKS (2)

» Two modes:

» low bandwidth - same number of messages as headers
first block syncing, but saves on number of transactions
sent

» high bandwidth - sends cmpctblock message before the
block has even been validated

Transmitting Receiving
Node Node

~—

> BLOCK

raw block

~ CMPCTBLOCK
header +
short ids

GETBLOCK
TXN

BLOCKTXN
txs

