
THE PEER-TO-PEER NETWORK
JOHN NEWBERY

@jfnewbery

github.com/jnewbery

THE PEER-TO-PEER NETWORK

▸ Introduction

▸ Types of nodes

▸ Message format

▸ Control messages

▸ Transaction propagation

▸ Block propagation

THE PEER TO
PEER NETWORK

WHAT IS THE PEER-TO-PEER NETWORK?

▸ How transactions and blocks are propagated to Bitcoin
nodes

▸ Open, flat peer-to-peer network - no authentication, no
special nodes

▸ Must be resistant to attacks:

▸ Denial-Of-Service attacks

▸ Sybil attacks

NETWORK COMMANDS

▸ VERSION

▸ VERACK

▸ ADDR

▸ GETADDR

▸ INV

▸ GETDATA

▸ GETBLOCKS

▸ GETHEADERS

▸ TX

▸ BLOCK

▸ HEADERS

▸ PING

▸ PONG

CONNECTING TO THE PEER-TO-PEER NETWORK

▸ Nodes initially connect to one or more seed nodes

▸ Addresses of other nodes on the network are gossiped
using ADDR messages

▸ A Bitcoin Core node will connect to up to eight outbound
peers

▸ Nodes may or may not accept inbound peers

DISCONNECTING AND BANNING (1)

▸ Nodes which misbehave need to be removed:

▸ They waste system resources

▸ They take up slots that could be used for honest peers

DISCONNECTING AND BANNING (2)

▸ ‘bad behavior’ may include:

▸ Invalid transactions or blocks

▸ Unconnected blocks

▸ Stalling

▸ Non-standard transactions

▸ Malformed messages

DISCONNECTING AND BANNING (3)

▸ Depending on the misbehavior, Bitcoin Core may:

▸ Ignore the problem and continue

▸ Disconnect the peer immediately

▸ Ban the peer (disconnect and don’t allow connections
from the same IP address for 24 hours)

▸ Apply DoS points. When the DoS score reaches 100,
ban the peer

TYPES OF
NODES

FULL NODE

▸ Also called a fully validating node

▸ Receives blocks as they are mined and propagated around the
network

▸ Verifies the validity of all blocks and all transactions included in
those blocks

▸ Enforces the consensus rules of the Bitcoin network

▸ Maintains a collection of all the unspent outputs

▸ The most secure and private way to use Bitcoin

PRUNED NODE

▸ A type of full node

▸ Discards old block data to save disk space

▸ Retains at least 2 days of blocks and undo data to allow for
re-orgs

▸ Propagates new blocks but cannot serve old blocks

▸ As secure as a non-pruned full node

‘ARCHIVAL’ NODE

▸ Unlike a pruned node, retains all old block and undo data

▸ Can serve old blocks to peers on the network

▸ Signaled using NODE_NETWORK in the version
handshake

SIMPLE PAYMENT VERIFICATION (SPV) NODE (1)

▸ Only downloads:

▸ the block headers

▸ information about specific transactions

▸ Can validate proof-of-work

▸ Can’t validate other network rules:

▸ Can’t detect invalid or double-spend transactions

▸ Can’t verify money supply

SIMPLE PAYMENT VERIFICATION (SPV) NODE (2)

▸ Can verify that a transaction is included in a block (by
asking for Merkle proofs)

▸ Can’t verify that a transaction hasn’t appeared in the
blockchain

▸ Can use Bloom filters to preserve (some) privacy

▸ -blocksonly - full node which doesn’t propagate
transactions

▸ -nolisten - node which makes outbound connections but
doesn’t accept inbound connections

▸ -onion - connect to peers using Tor

▸ -proxy - connect to peers via a proxy

▸ -whitelist=<IP address or subnet> -

OTHER NODE OPTIONS

MESSAGE
FORMAT

▸ Bitcoin P2P messages contain a header and a payload

▸ Header is 24 bytes:

▸ Magic (4 bytes): indicates the network (0xf9beb4d9 for Bitcoin

▸ Command name (12 bytes): eg ADDR, INV, BLOCK, etc

▸ Payload size (4 bytes): how large the payload is in bytes

▸ Checksum (4 bytes): Double SHA256 of payload

▸ Payload: up to 32MB. Each command has its own defined format

MESSAGE FORMAT

MESSAGE FORMAT

▸ f9beb4d976657261636b000000000000000000005df6e0e2 

▸ f9beb4d9 : network magic for Bitcoin main net 

▸ 76657261636b000000000000 : VERACK with zero padding 

▸ 00000000 : payload size is zero 

▸ 5df6e0e2 : checksum SHA256(SHA256(“”)) 

EXAMPLE HEADER

CONTROL
MESSAGES

VERSION HANDSHAKE

▸ P2P connection starts with a version handshake

▸ Used by nodes to exchange information about themselves

▸ A node responds to a VERSION message with VERACK

VERSION MESSAGE (1)

▸ Version (4 bytes)

▸ highest version the transmitting node can connect to

▸ Services (8 bytes)

▸ bitfield of services supported by the transmitting node

▸ Timestamp (8 bytes)

▸ Unix timestamp of transmitting node

VERSION MESSAGE (2)

▸ addr_recv services (8 bytes)

▸ services supported by the receiving node

▸ addr_recv IP address and port (16 + 2 bytes)

▸ IPv6 address and port of receiving node

▸ addr_trans services (8 bytes)

▸ services supported by the transmitting node (should be same as Services
field)

▸ addr_trans IP address and port (16 + 2 bytes)

▸ IPv6 address and port of transmitting node

VERSION MESSAGE (3)

▸ nonce (8 bytes)

▸ random number used to detect if a node is connecting to itself

▸ user_agent (compactSize + len)

▸ string indicating the software the node is using

▸ start_height (4 bytes)

▸ height of the transmitting node’s best blockchain

▸ relay (bool - optional)

▸ indicates whether INV or TX messages should be sent to the transmitting
node

OTHER CONTROL MESSAGES

▸ VERACK - sent in response to a VERSION message

▸ ADDR - gossips connection information about other nodes

▸ GETADDR - requests information about other nodes

▸ PING/PONG - confirms connectivity

▸ FILTERLOAD / FILTERADD / FILTERCLEAR - sets and unsets
bloom filters for SPV transaction propagation

TRANSACTION
PROPAGATION

INVENTORY ANNOUNCEMENT

▸ New transactions are announced in an INV message

▸ INV messages contain the txid

▸ (Can also contain block hashes)

▸ If the receiving node wants the announced inventory, it
responds with a GETDATA message

▸ The announcing node then sends a TX messages

BLOCK
PROPAGATION

BLOCK PROPAGATION

▸ Originally, blocks were propagated using INV-GETDATA-
BLOCK

▸ v0.10.0 introduced ‘headers first’ syncing

▸ v0.12.0 introduced the SENDHEADERS message

▸ v0.13.0 introduced compact blocks

▸ v0.14.0 introduced High Bandwidth compact blocks

HEADERS-FIRST SYNCING

▸ Transmitting node sends INV with block hash as normal

▸ Receiving node responds with:

▸ GETHEADERS (for block headers up to the tip)

▸ GETDATA (for the tip block)

▸ Transmitting node sends:

▸ HEADERS (connecting tip to the receiving node’s best block)

▸ BLOCK (containing the tip block)

SENDHEADERS

▸ SENDHEADERS is a new control message in protocol
version 70012

▸ Sent immediately after VERSION handshake

▸ Indicates that the transmitting node would prefer to
receive HEADERs messages instead of INVs

▸ Saves a INV-GETHEADERS round trip

▸ Defined in BIP 130

COMPACT BLOCKS (1)

▸ Reduces time and bandwidth for propagating blocks

▸ Relies on fact that peer has already seen most transactions
in a new block

▸ Enabled by node sending a SENDCMPCT message (similar
to SENDHEADERS)

▸ Defined in BIP 152

COMPACT BLOCKS (2)

▸ Two modes:

▸ low bandwidth - same number of messages as headers
first block syncing, but saves on number of transactions
sent

▸ high bandwidth - sends cmpctblock message before the
block has even been validated

