
HIERARCHICAL DETERMINISTIC WALLETS
JOHN NEWBERY

@jfnewbery

github.com/jnewbery

HIERARCHICAL DETERMINISTIC WALLETS

▸ The problems of address reuse

▸ BIP 32 - HD Wallets

▸ BIP 39 - Mnemonics for HD wallet seeds

▸ BIPs 43 and 44 - Multi-Account Hierarchy for HD Wallets

THE PROBLEMS OF
ADDRESS REUSE

THE PROBLEMS OF ADDRESS REUSE

▸ Privacy

▸ ECDSA Security

▸ Quantum Security

PRIVACY

▸ Bitcoin transactions are public

▸ Chain analysis can uncover patterns

▸ Re-using addresses can reveal information

SECURITY

▸ ECDSA requires a (cryptographically secure random)
ephemeral key

▸ Signing with the same ephemeral key reveals the private
key

▸ If your PRNG is broken, then reusing an address can reveal
the private key

QUANTUM SECURITY

▸ Sending to an address (using P2PKH) does not reveal the
public key

▸ Spending from an address reveals the public key

▸ ECDSA is not quantum secure

▸ SHA256 is more quantum resistant

BIP 32 
HD WALLETS

HD WALLETS - USE CASES

▸ Full wallet sharing

▸ Per-office or per-department balances

▸ Recurrent transactions

▸ Unsecure money receiver

SINGLE-USE ADDRESSES

▸ Best practice is to only use addresses once

▸ Having many unlinked private keys is difficult to backup
and share

▸ Better to have a seed and a way to deterministically derive
new private keys

▸ Sharing a hash chain is all or nothing

▸ A tree allows sub-branches to be shared individually

BIP 32 OVERVIEW

▸ Generate a random 128-512 bit seed S

▸ Use HMACs (Hash Message Authentication Codes) to
derive child nodes.

▸ For the master key m:

▸ I = HMAC-SHA512(Key = “Bitcoin seed”, data = S)

▸ IL (the left 256 bits) is the master private key.

▸ IR (the right 256 bits) is the master chain code.

CHILD KEY DERIVATION (PRIVATE)

▸ Derive child key from parent key using HMACs

▸ I = HMAC-SHA512(key = Cpar, data = Kpar || i)  
non-hardened, i < 231

▸ I = HMAC-SHA512(key = Cpar, data = 0x00 || kpar || i)  
hardened, i >= 231 notation: iH == i’ == i + 231

▸ IL + kpar is the child private key

▸ IR is the child chain code

▸ This function is called CKDpriv

CHILD KEY DERIVATION (PUBLIC)

▸ Only possible for non-hardened child keys

▸ I = HMAC-SHA512(key = Cpar, data = Kpar || i)  
(non-hardened)

▸ IL + Kpar is the child public key

▸ IR is the child chain code

▸ This function is called CKDpub

SERIALIZATION FORMAT

▸ BIP 32 defines a 78 byte extended key format:

▸ 4 bytes: “version” (eg 0x0488b21e - “xpub”) for Bitcoin main net

▸ 1 byte: depth in key derivation tree

▸ 4 bytes: fingerprint of the parent’s key

▸ 4 bytes: child index

▸ 32 bytes: chain code

▸ 33 bytes: pub key compressed or 0x00 || priv key

KEY IDENTIFIER AND FINGERPRINT

▸ Identifier of extended key is HASH160(Public Key)

▸ This is the same data used in the Bitcoin address

▸ fingerprint of key is first 32 bits of identifier

KEY TREE

▸ Construct a tree of keys by repeatedly applying CKDpriv

▸ Notation: index of each child key, separated by slashes

▸ eg: m/3H/2/5 or m/3’/2/5

DEFAULT WALLET LAYOUT (1)

▸ Wallet is organized as several ‘accounts’, indexed by i

▸ Each account has two keypair chains:

▸ internal: used for giving out addresses. 
Key notation: m/iH/1/k

▸ external: used for change addresses, etc. 
Key notation m/iH/0/k

DEFAULT WALLET LAYOUT (2)

SECURITY OF HD WALLETS

▸ Given a child extended private key (ki, ci) and i, attacker cannot derive
parent private key

▸ given any number of extended private keys (kij, cij) and ij, attacker
cannot determine if they are from a common parent

▸ HOWEVER!

▸ given a parent extended public key (Kpar, cpar) and a non-hardened
child private key, it is possible to derive a parent extended private key

▸ a compromised extended private key compromises all private keys
up to the first hardened parent

BIP 39 
MNEMONICS

BIP 39

▸ A way to generate a BIP 32 seed using a mnemonic

▸ Submitted by Slush (Satoshi Labs) and used in Trezor

▸ Used in the Trezor hardware wallet

▸ There are some criticisms of this method

GENERATING THE MNEMONIC SENTENCE

▸ Generate 128-256 bits of entropy. Call these bits ENT

▸ Append the first len(ENT)/32 bits of SHA256(ENT)

▸ Split the concatenated bits into 11 bit chunks

▸ Each 11 bit chunk corresponds to an entry in a 2048 word
list

▸ Example:  
SCHEME SPOT PHOTO CARD BABY MOUNTAIN 
DEVICE KICK CRADLE PACT JOIN BORROW

LENGTH OF MNEMONIC SENTENCE

len(ENT) len(CS) len(ENT + CS) Number of
words

128 4 132 12

192 6 198 18

256 8 264 24

GENERATING THE SEED FROM THE MNEMONIC SENTENCE

▸ Use PBKDF2 (Password-based Key Derivation Function 2)

▸ 2048 rounds of HMAC-SHA256

▸ Password: the mnemonic sentence

▸ Salt: “mnemonic” + optional passphrase

CRITICISMS

▸ A fixed wordlist is required (because of the way the
checksum is computed)

▸ Does not have ‘versioning’ - the seed does not indicate
how the tree should be derived

▸ Relies on the security of the CSPRNG. Not clear whether
using a random input to the PBKDF is any better than
using a user-supplied password

BIPS 43 & 44 - 
MULTI-ACCOUNT
HIERARCHIES

BIPS 43 AND 44

▸ Another two BIPs from Slush (Satoshi Labs)

▸ Imposes structure on the key tree

▸ Intended for portability between wallet implementations

BIP 43

▸ First level of tree hierarchy should be ‘purpose’ 
m / purpose’ / *

▸ For example, BIP 44 hierarchy starts: 
m / 44’ / *

BIP 44

▸ Defines entire structure for trees

▸ m / purpose’ / coin_type’ / account’ / change / address_index

▸ purpose: 44’

▸ coin_type: defined in Satoshi Labs SLIP-0044. Bitcoin main net is 0’

▸ account: used for wallet user organization

▸ change: 0 for external chain, 1 for internal chain (same as BIP 32 default
layout)

▸ address_index: set of addresses for use by the wallet

ACCOUNT DISCOVERY

▸ Used to restore wallet from backup seed

▸ Account field starts from 0

▸ Scans external chain until there’s a gap of 20 unused
addresses

▸ If account i has transactions, also try scanning account i + 1

